diff --git a/Framework/Keras/Keras Assingment/Shivam_Task1/Shivam_Logs.jpg b/Framework/Keras/Keras Assingment/Shivam_Task1/Shivam_Logs.jpg new file mode 100644 index 0000000..261de16 Binary files /dev/null and b/Framework/Keras/Keras Assingment/Shivam_Task1/Shivam_Logs.jpg differ diff --git a/Framework/Keras/Keras Assingment/Shivam_Task1/Shivam_Model.py b/Framework/Keras/Keras Assingment/Shivam_Task1/Shivam_Model.py new file mode 100644 index 0000000..e11be7f --- /dev/null +++ b/Framework/Keras/Keras Assingment/Shivam_Task1/Shivam_Model.py @@ -0,0 +1,35 @@ +import numpy +from keras.datasets import mnist +from keras.models import Sequential +from keras.layers import Dense +from keras.utils import np_utils +from keras.callbacks import CSVLogger + +(X_train, Y_train),(X_test, Y_test) = mnist.load_data() + +# print(Y_test.shape) +# print(X_train) + +X_train = X_train.reshape(X_train.shape[0],784) +X_test = X_test.reshape(X_test.shape[0], 784) + + +X_train = X_train / 255 +X_test = X_test / 255 + +Y_train = np_utils.to_categorical(Y_train) +Y_test = np_utils.to_categorical(Y_test) +# print(Y_test.shape[1]) + +model = Sequential() +model.add(Dense(512,input_dim = 784 ,activation = 'relu')) +model.add(Dense(10,activation = 'softmax')) + +model.compile(loss = 'categorical_crossentropy', optimizer = 'adam', metrics=['accuracy']) + +csv_logger = CSVLogger('Shivam_Logs.txt') +model.fit(X_train,Y_train, validation_data=(X_test,Y_test),epochs = 10, batch_size = 100, verbose = 2) + +scores = model.evaluate(X_test, Y_test, verbose=0) + +print("Accuracy: %.2f%%" % (scores[1]*100)) \ No newline at end of file