From ec6446257d7b35a6029892b4b65233aa3eca4bda Mon Sep 17 00:00:00 2001 From: Stuti Jain <41702974+JainStuti25@users.noreply.github.com> Date: Wed, 10 Jul 2019 18:23:43 +0530 Subject: [PATCH 1/3] Top90.txt Phase 1: Top90 words #32 --- Phase 1/Python assignment/Top90.txt | 90 +++++++++++++++++++++++++++++ 1 file changed, 90 insertions(+) create mode 100644 Phase 1/Python assignment/Top90.txt diff --git a/Phase 1/Python assignment/Top90.txt b/Phase 1/Python assignment/Top90.txt new file mode 100644 index 0000000..f976cd7 --- /dev/null +++ b/Phase 1/Python assignment/Top90.txt @@ -0,0 +1,90 @@ +said : 2762 +one : 2008 +prince : 1856 +pierre : 1753 +now : 1242 +natásha : 1061 +will : 1050 +man : 1031 +andrew : 1015 +time : 891 +face : 885 +princess : 859 +went : 857 +french : 847 +eyes : 815 +know : 806 +old : 801 +room : 757 +thought : 752 +men : 747 +chapter : 731 +began : 708 +see : 703 +rostóv : 702 +go : 701 +came : 680 +without : 667 +moscow : 665 +asked : 664 +still : 659 +looked : 646 +come : 646 +well : 640 +felt : 626 +count : 616 +army : 615 +first : 612 +left : 596 +mary : 595 +another : 591 +something : 589 +say : 579 +seemed : 578 +two : 573 +away : 572 +nicholas : 570 +life : 563 +head : 558 +little : 552 +day : 535 +whole : 528 +hand : 527 +don’t : 515 +people : 508 +even : 503 +yes : 503 +long : 501 +back : 497 +emperor : 495 +heard : 491 +must : 480 +general : 468 +way : 467 +napoleon : 462 +always : 461 +saw : 461 +look : 461 +made : 457 +russian : 449 +nothing : 442 +young : 440 +though : 435 +countess : 434 +kutúzov : 430 +suddenly : 428 +love : 426 +round : 418 +knew : 407 +right : 407 +voice : 407 +smile : 406 +never : 405 +told : 405 +officer : 402 +moment : 400 +took : 395 +looking : 389 +us : 389 +everything : 386 +much : 385 From e7802d507132db594337c1542ed1431f6e5e08c9 Mon Sep 17 00:00:00 2001 From: Stuti Jain <41702974+JainStuti25@users.noreply.github.com> Date: Wed, 17 Jul 2019 01:38:32 +0530 Subject: [PATCH 2/3] SutiJain_Task1 --- .../StutiJain_ModelwithLogs.ipynb | 187 ++++++++++++++++++ 1 file changed, 187 insertions(+) create mode 100644 Framework/Keras/Keras Assingment/StutiJain_Task1/StutiJain_ModelwithLogs.ipynb diff --git a/Framework/Keras/Keras Assingment/StutiJain_Task1/StutiJain_ModelwithLogs.ipynb b/Framework/Keras/Keras Assingment/StutiJain_Task1/StutiJain_ModelwithLogs.ipynb new file mode 100644 index 0000000..61f35d3 --- /dev/null +++ b/Framework/Keras/Keras Assingment/StutiJain_Task1/StutiJain_ModelwithLogs.ipynb @@ -0,0 +1,187 @@ +{ + "cells": [ + { + "cell_type": "code", + "execution_count": 36, + "metadata": {}, + "outputs": [], + "source": [ + "import numpy as np\n", + "import matplotlib.pyplot as plt\n", + "import pandas as pd\n", + "import tensorflow as tf" + ] + }, + { + "cell_type": "code", + "execution_count": 37, + "metadata": {}, + "outputs": [], + "source": [ + "mnist = tf.keras.datasets.mnist" + ] + }, + { + "cell_type": "code", + "execution_count": 38, + "metadata": {}, + "outputs": [], + "source": [ + "(x_train, y_train),(x_test, y_test) = mnist.load_data()\n", + "x_train = tf.keras.utils.normalize(x_train, axis=1)\n", + "x_test = tf.keras.utils.normalize(x_test, axis=1)" + ] + }, + { + "cell_type": "code", + "execution_count": 39, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "(60000, 28, 28)\n" + ] + } + ], + "source": [ + "print(x_train.shape)" + ] + }, + { + "cell_type": "code", + "execution_count": 42, + "metadata": {}, + "outputs": [], + "source": [ + "model = tf.keras.models.Sequential()\n", + "model.add(tf.keras.layers.Flatten())" + ] + }, + { + "cell_type": "code", + "execution_count": 43, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "Epoch 1/5\n", + "60000/60000 [==============================] - 13s 220us/sample - loss: 0.1988 - acc: 0.9397\n", + "Epoch 2/5\n", + "60000/60000 [==============================] - 13s 220us/sample - loss: 0.0810 - acc: 0.9751\n", + "Epoch 3/5\n", + "60000/60000 [==============================] - 13s 221us/sample - loss: 0.0522 - acc: 0.9832\n", + "Epoch 4/5\n", + "60000/60000 [==============================] - 13s 214us/sample - loss: 0.0386 - acc: 0.9873\n", + "Epoch 5/5\n", + "60000/60000 [==============================] - 13s 211us/sample - loss: 0.0287 - acc: 0.9905\n" + ] + }, + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 43, + "metadata": {}, + "output_type": "execute_result" + } + ], + "source": [ + "model.add(tf.keras.layers.Dense(512 ,activation=tf.nn.relu))\n", + "model.add(tf.keras.layers.Dense(512, activation=tf.nn.relu))\n", + "model.add(tf.keras.layers.Dense(10, activation=tf.nn.softmax))\n", + "model.compile(optimizer='adam',\n", + " loss='sparse_categorical_crossentropy',\n", + " metrics=['accuracy'])\n", + "model.fit(x_train, y_train, epochs=5)\n" + ] + }, + { + "cell_type": "code", + "execution_count": 44, + "metadata": {}, + "outputs": [ + { + "data": { + "text/plain": [ + "" + ] + }, + "execution_count": 44, + "metadata": {}, + "output_type": "execute_result" + }, + { + "data": { + "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD4CAYAAAAq5pAIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAOPElEQVR4nO3db4hV953H8c9XnTHJWKLG0fpn4rgSSCRhtblMRJfi0qQkPojpgy6VUFwIawMJVOiDDemD+jAs25ZCShO7kdrQjRTaECGy20QK0gcx3gQTzZpVoxOdOjgjmj/+IU302wdzLBOd+zvjPefec+v3/YLh3jnfe+75cvUz5977O+f8zN0F4MY3peoGALQHYQeCIOxAEIQdCIKwA0FMa+fG5syZ4/39/e3cJBDK4OCgTp8+bRPVCoXdzB6U9DNJUyX9l7s/k3p8f3+/6vV6kU0CSKjVag1rTb+NN7Opkn4u6SFJyyStN7NlzT4fgNYq8pl9QNIRdz/q7n+RtF3SunLaAlC2ImFfKOnEuN+HsmVfYmYbzaxuZvXR0dECmwNQRJGwT/QlwDXH3rr7FnevuXutt7e3wOYAFFEk7EOS+sb9vkjSyWLtAGiVImHfK+kOM1tiZt2SviNpRzltAShb00Nv7v6FmT0p6X81NvS21d3fK60zAKUqNM7u7jsl7SypFwAtxOGyQBCEHQiCsANBEHYgCMIOBEHYgSAIOxAEYQeCIOxAEIQdCIKwA0EQdiAIwg4EQdiBIAg7EARhB4Ig7EAQhB0IgrADQRB2IAjCDgRB2IEgCDsQBGEHgiDsQBCEHQiCsANBEHYgCMIOBFFoFld0PndP1j///PNC6+c5ePBg0+t++OGHyfqaNWuS9c2bNzes7dmzJ7nu2bNnk/XBwcFk/eLFi8l6FQqF3cwGJX0q6ZKkL9y9VkZTAMpXxp79n939dAnPA6CF+MwOBFE07C7pD2b2lpltnOgBZrbRzOpmVh8dHS24OQDNKhr21e7+NUkPSXrCzL5+9QPcfYu719y91tvbW3BzAJpVKOzufjK7HZH0sqSBMpoCUL6mw25mPWb2lSv3JX1T0oGyGgNQriLfxs+T9LKZXXme/3b3/ymlqxvMxx9/nKxfunQpWT958mSyfubMmYa17N+noRMnTiTr58+fT9bzdHV1Nax1d3cX2vb27duT9VdffbVhbfHixcl1+/r6kvVHH300We9ETYfd3Y9K+scSewHQQgy9AUEQdiAIwg4EQdiBIAg7EASnuJbg2LFjyfqLL75Y6PmnT5+erM+cObNhraenJ7nulCnV/b3PGxZcvXp1sv7ZZ58l688++2zD2oIFC5Lr5r1uS5YsSdY7EXt2IAjCDgRB2IEgCDsQBGEHgiDsQBCEHQiCcfYS5F2B55ZbbknWL1y4UGY7pZo7d26ynneaaupSZNOmpf/7LVu2LFnH9WHPDgRB2IEgCDsQBGEHgiDsQBCEHQiCsANBMM5eghkzZiTra9euTdaPHDmSrC9atChZ37t3b7KeMmvWrGT9gQceSNbzxso/+uijhrVDhw4l10W52LMDQRB2IAjCDgRB2IEgCDsQBGEHgiDsQBCMs7dB3nnZS5cuTdbzrht/7ty5hrXjx48n173rrruS9bxx9Dypa9oPDAwUem5cn9w9u5ltNbMRMzswbtlsM3vNzA5nt+kjMwBUbjJv438l6cGrlj0laZe73yFpV/Y7gA6WG3Z33y3pzFWL10nalt3fJumRkvsCULJmv6Cb5+7DkpTdNrxQmZltNLO6mdVT1yMD0Fot/zbe3be4e83da3kXZgTQOs2G/ZSZzZek7HakvJYAtEKzYd8haUN2f4OkV8ppB0Cr5A6imtlLktZImmNmQ5J+JOkZSb81s8ckHZf07VY2eaPLG0fPk3ft9pS8c+n7+/ubfm50ltywu/v6BqVvlNwLgBbicFkgCMIOBEHYgSAIOxAEYQeC4BTXG0CtVmtYS53+KkkjI+njoYaGhpL1vMtco3OwZweCIOxAEIQdCIKwA0EQdiAIwg4EQdiBIBhnvwGkLve8cuXK5Lo7d+5M1nfv3p2sL1iwIFmfN29ew1reZaxRLvbsQBCEHQiCsANBEHYgCMIOBEHYgSAIOxAE4+w3uBkzZiTrq1atStZff/31ZP3w4cPJ+uDgYMOauyfXXbx4cbLe09OTrOPL2LMDQRB2IAjCDgRB2IEgCDsQBGEHgiDsQBCMsweXd933hx9+OFl/4403kvXUden37duXXHd4eDhZv/fee5P1mTNnJuvR5O7ZzWyrmY2Y2YFxyzab2Z/NbF/2s7a1bQIoajJv438l6cEJlv/U3ZdnP+nLnQCoXG7Y3X23pDNt6AVACxX5gu5JM3s3e5s/q9GDzGyjmdXNrD46OlpgcwCKaDbsv5C0VNJyScOSftzoge6+xd1r7l7r7e1tcnMAimoq7O5+yt0vuftlSb+UNFBuWwDK1lTYzWz+uF+/JelAo8cC6Ay54+xm9pKkNZLmmNmQpB9JWmNmyyW5pEFJ32thj6jQ7Nmzk/X7778/WT9x4kTD2ptvvplc95133knW9+/fn6xv2rQpWY8mN+zuvn6CxS+0oBcALcThskAQhB0IgrADQRB2IAjCDgTBKa4opLu7O1lfunRpw9revXsLbfvQoUPJ+p49exrW7rvvvkLb/nvEnh0IgrADQRB2IAjCDgRB2IEgCDsQBGEHgmCcHUlnzqQvP3j06NFk/ezZsw1rly9fbqqnKxYsWJCsDwxwTZXx2LMDQRB2IAjCDgRB2IEgCDsQBGEHgiDsQBCMs9/gPvnkk2Q975zw999/P1m/ePFist7V1dWwlncu/JQp6X3RrbfemqybWbIeDXt2IAjCDgRB2IEgCDsQBGEHgiDsQBCEHQiCcfa/A+fPn0/WP/jgg4a1Y8eOFXruvHH0Im677bZkPe/a7qlr0uNauXt2M+szsz+a2UEze8/Mvp8tn21mr5nZ4ex2VuvbBdCsybyN/0LSD9z9LkkrJT1hZsskPSVpl7vfIWlX9juADpUbdncfdve3s/ufSjooaaGkdZK2ZQ/bJumRVjUJoLjr+oLOzPolrZC0R9I8dx+Wxv4gSJrbYJ2NZlY3s/ro6GixbgE0bdJhN7MZkn4naZO7p8+uGMfdt7h7zd1rvb29zfQIoASTCruZdWks6L9x999ni0+Z2fysPl/SSGtaBFCG3KE3GztP8AVJB939J+NKOyRtkPRMdvtKSzq8AZw7dy5Zz/t4s2vXrmT90qVLDWs9PT3JdfNOI80zd+6En97+ZsWKFQ1rt99+e6Ft4/pMZpx9taTvStpvZvuyZU9rLOS/NbPHJB2X9O3WtAigDLlhd/c/SWp0FYBvlNsOgFbhcFkgCMIOBEHYgSAIOxAEYQeC4BTXSUpdkvm5555Lrps3ln3hwoVkffr06cn6zJkzk/WUvKMaV61alaz39fUl61OnTr3untAa7NmBIAg7EARhB4Ig7EAQhB0IgrADQRB2IIgw4+zPP/98sl6v15P1oaGhhrWbb745ue6dd96ZrN90003Jep5p0xr/M959993Jde+5555knXHyGwd7diAIwg4EQdiBIAg7EARhB4Ig7EAQhB0IIsw4++OPP56sL1y4MFlPXR+9v7+/6XWl/LHurq6uZH3lypUNa93d3cl1EQd7diAIwg4EQdiBIAg7EARhB4Ig7EAQhB0IYjLzs/dJ+rWkr0q6LGmLu//MzDZL+jdJVyYXf9rdd7aq0aLcveoWgEpN5qCaLyT9wN3fNrOvSHrLzF7Laj919/9sXXsAyjKZ+dmHJQ1n9z81s4OS0oebAeg41/WZ3cz6Ja2QtCdb9KSZvWtmW81sVoN1NppZ3czqo6OjEz0EQBtMOuxmNkPS7yRtcvdPJP1C0lJJyzW25//xROu5+xZ3r7l7LW9eMQCtM6mwm1mXxoL+G3f/vSS5+yl3v+TulyX9UtJA69oEUFRu2M3MJL0g6aC7/2Tc8vnjHvYtSQfKbw9AWSbzbfxqSd+VtN/M9mXLnpa03syWS3JJg5K+15IOAZRiMt/G/0mSTVDq2DF1ANfiCDogCMIOBEHYgSAIOxAEYQeCIOxAEIQdCIKwA0EQdiAIwg4EQdiBIAg7EARhB4Ig7EAQ1s5LLJvZqKQPxy2aI+l02xq4Pp3aW6f2JdFbs8rsbbG7T3j9t7aG/ZqNm9XdvVZZAwmd2lun9iXRW7Pa1Rtv44EgCDsQRNVh31Lx9lM6tbdO7Uuit2a1pbdKP7MDaJ+q9+wA2oSwA0FUEnYze9DM/t/MjpjZU1X00IiZDZrZfjPbZ2b1invZamYjZnZg3LLZZvaamR3ObiecY6+i3jab2Z+z126fma2tqLc+M/ujmR00s/fM7PvZ8kpfu0RfbXnd2v6Z3cymSjok6QFJQ5L2Slrv7v/X1kYaMLNBSTV3r/wADDP7uqRzkn7t7ndny/5D0hl3fyb7QznL3f+9Q3rbLOlc1dN4Z7MVzR8/zbikRyT9qyp87RJ9/Yva8LpVsWcfkHTE3Y+6+18kbZe0roI+Op6775Z05qrF6yRty+5v09h/lrZr0FtHcPdhd387u/+ppCvTjFf62iX6aosqwr5Q0olxvw+ps+Z7d0l/MLO3zGxj1c1MYJ67D0tj/3kkza24n6vlTuPdTldNM94xr10z058XVUXYJ5pKqpPG/1a7+9ckPSTpieztKiZnUtN4t8sE04x3hGanPy+qirAPSeob9/siSScr6GNC7n4yux2R9LI6byrqU1dm0M1uRyru5286aRrviaYZVwe8dlVOf15F2PdKusPMlphZt6TvSNpRQR/XMLOe7IsTmVmPpG+q86ai3iFpQ3Z/g6RXKuzlSzplGu9G04yr4teu8unP3b3tP5LWauwb+Q8k/bCKHhr09Q+S3sl+3qu6N0kvaext3ecae0f0mKTbJO2SdDi7nd1Bvb0oab+kdzUWrPkV9fZPGvto+K6kfdnP2qpfu0RfbXndOFwWCIIj6IAgCDsQBGEHgiDsQBCEHQiCsANBEHYgiL8CObYutWTbTN8AAAAASUVORK5CYII=\n", + "text/plain": [ + "
" + ] + }, + "metadata": { + "needs_background": "light" + }, + "output_type": "display_data" + } + ], + "source": [ + "plt.imshow(x_train[0], cmap = plt.cm.binary)\n", + "plt.show" + ] + }, + { + "cell_type": "code", + "execution_count": 45, + "metadata": {}, + "outputs": [ + { + "name": "stdout", + "output_type": "stream", + "text": [ + "10000/10000 [==============================] - 1s 85us/sample - loss: 0.0844 - acc: 0.9782\n", + "Loss is 0.08439339621820836\n", + "Accuracy is 0.9782\n" + ] + } + ], + "source": [ + "val_loss, val_acc = model.evaluate(x_test, y_test)\n", + "print(\"Loss is\", val_loss)\n", + "print(\"Accuracy is\",val_acc)" + ] + }, + { + "cell_type": "code", + "execution_count": null, + "metadata": {}, + "outputs": [], + "source": [] + } + ], + "metadata": { + "kernelspec": { + "display_name": "Python 3", + "language": "python", + "name": "python3" + }, + "language_info": { + "codemirror_mode": { + "name": "ipython", + "version": 3 + }, + "file_extension": ".py", + "mimetype": "text/x-python", + "name": "python", + "nbconvert_exporter": "python", + "pygments_lexer": "ipython3", + "version": "3.7.2" + } + }, + "nbformat": 4, + "nbformat_minor": 2 +} From 2d6238a6f549560c5ac0a1e677045500330153b2 Mon Sep 17 00:00:00 2001 From: Soma Siddhartha <43775224+Sedherthe@users.noreply.github.com> Date: Thu, 25 Jul 2019 19:10:37 +0530 Subject: [PATCH 3/3] Delete Top90.txt --- Phase 1/Python assignment/Top90.txt | 90 ----------------------------- 1 file changed, 90 deletions(-) delete mode 100644 Phase 1/Python assignment/Top90.txt diff --git a/Phase 1/Python assignment/Top90.txt b/Phase 1/Python assignment/Top90.txt deleted file mode 100644 index f976cd7..0000000 --- a/Phase 1/Python assignment/Top90.txt +++ /dev/null @@ -1,90 +0,0 @@ -said : 2762 -one : 2008 -prince : 1856 -pierre : 1753 -now : 1242 -natásha : 1061 -will : 1050 -man : 1031 -andrew : 1015 -time : 891 -face : 885 -princess : 859 -went : 857 -french : 847 -eyes : 815 -know : 806 -old : 801 -room : 757 -thought : 752 -men : 747 -chapter : 731 -began : 708 -see : 703 -rostóv : 702 -go : 701 -came : 680 -without : 667 -moscow : 665 -asked : 664 -still : 659 -looked : 646 -come : 646 -well : 640 -felt : 626 -count : 616 -army : 615 -first : 612 -left : 596 -mary : 595 -another : 591 -something : 589 -say : 579 -seemed : 578 -two : 573 -away : 572 -nicholas : 570 -life : 563 -head : 558 -little : 552 -day : 535 -whole : 528 -hand : 527 -don’t : 515 -people : 508 -even : 503 -yes : 503 -long : 501 -back : 497 -emperor : 495 -heard : 491 -must : 480 -general : 468 -way : 467 -napoleon : 462 -always : 461 -saw : 461 -look : 461 -made : 457 -russian : 449 -nothing : 442 -young : 440 -though : 435 -countess : 434 -kutúzov : 430 -suddenly : 428 -love : 426 -round : 418 -knew : 407 -right : 407 -voice : 407 -smile : 406 -never : 405 -told : 405 -officer : 402 -moment : 400 -took : 395 -looking : 389 -us : 389 -everything : 386 -much : 385