|
1 | 1 | from datetime import timedelta |
2 | 2 |
|
3 | 3 | import numpy as np |
4 | | -import pytest |
5 | 4 |
|
6 | 5 | from pandas.core.dtypes.dtypes import DatetimeTZDtype |
7 | 6 |
|
@@ -89,16 +88,7 @@ def test_dtypes_gh8722(self, float_string_frame): |
89 | 88 | result = df.dtypes |
90 | 89 | tm.assert_series_equal(result, Series({0: np.dtype("int64")})) |
91 | 90 |
|
92 | | - def test_singlerow_slice_categoricaldtype_gives_series(self): |
93 | | - # GH29521 |
94 | | - df = DataFrame({"x": pd.Categorical("a b c d e".split())}) |
95 | | - result = df.iloc[0] |
96 | | - raw_cat = pd.Categorical(["a"], categories=["a", "b", "c", "d", "e"]) |
97 | | - expected = Series(raw_cat, index=["x"], name=0, dtype="category") |
98 | | - |
99 | | - tm.assert_series_equal(result, expected) |
100 | | - |
101 | | - def test_timedeltas(self): |
| 91 | + def test_dtypes_timedeltas(self): |
102 | 92 | df = DataFrame( |
103 | 93 | dict( |
104 | 94 | A=Series(date_range("2012-1-1", periods=3, freq="D")), |
@@ -136,95 +126,3 @@ def test_timedeltas(self): |
136 | 126 | index=list("ABCD"), |
137 | 127 | ) |
138 | 128 | tm.assert_series_equal(result, expected) |
139 | | - |
140 | | - @pytest.mark.parametrize( |
141 | | - "input_vals", |
142 | | - [ |
143 | | - ([1, 2]), |
144 | | - (["1", "2"]), |
145 | | - (list(pd.date_range("1/1/2011", periods=2, freq="H"))), |
146 | | - (list(pd.date_range("1/1/2011", periods=2, freq="H", tz="US/Eastern"))), |
147 | | - ([pd.Interval(left=0, right=5)]), |
148 | | - ], |
149 | | - ) |
150 | | - def test_constructor_list_str(self, input_vals, string_dtype): |
151 | | - # GH 16605 |
152 | | - # Ensure that data elements are converted to strings when |
153 | | - # dtype is str, 'str', or 'U' |
154 | | - |
155 | | - result = DataFrame({"A": input_vals}, dtype=string_dtype) |
156 | | - expected = DataFrame({"A": input_vals}).astype({"A": string_dtype}) |
157 | | - tm.assert_frame_equal(result, expected) |
158 | | - |
159 | | - def test_constructor_list_str_na(self, string_dtype): |
160 | | - |
161 | | - result = DataFrame({"A": [1.0, 2.0, None]}, dtype=string_dtype) |
162 | | - expected = DataFrame({"A": ["1.0", "2.0", None]}, dtype=object) |
163 | | - tm.assert_frame_equal(result, expected) |
164 | | - |
165 | | - @pytest.mark.parametrize( |
166 | | - "data, expected", |
167 | | - [ |
168 | | - # empty |
169 | | - (DataFrame(), True), |
170 | | - # multi-same |
171 | | - (DataFrame({"A": [1, 2], "B": [1, 2]}), True), |
172 | | - # multi-object |
173 | | - ( |
174 | | - DataFrame( |
175 | | - { |
176 | | - "A": np.array([1, 2], dtype=object), |
177 | | - "B": np.array(["a", "b"], dtype=object), |
178 | | - } |
179 | | - ), |
180 | | - True, |
181 | | - ), |
182 | | - # multi-extension |
183 | | - ( |
184 | | - DataFrame( |
185 | | - {"A": pd.Categorical(["a", "b"]), "B": pd.Categorical(["a", "b"])} |
186 | | - ), |
187 | | - True, |
188 | | - ), |
189 | | - # differ types |
190 | | - (DataFrame({"A": [1, 2], "B": [1.0, 2.0]}), False), |
191 | | - # differ sizes |
192 | | - ( |
193 | | - DataFrame( |
194 | | - { |
195 | | - "A": np.array([1, 2], dtype=np.int32), |
196 | | - "B": np.array([1, 2], dtype=np.int64), |
197 | | - } |
198 | | - ), |
199 | | - False, |
200 | | - ), |
201 | | - # multi-extension differ |
202 | | - ( |
203 | | - DataFrame( |
204 | | - {"A": pd.Categorical(["a", "b"]), "B": pd.Categorical(["b", "c"])} |
205 | | - ), |
206 | | - False, |
207 | | - ), |
208 | | - ], |
209 | | - ) |
210 | | - def test_is_homogeneous_type(self, data, expected): |
211 | | - assert data._is_homogeneous_type is expected |
212 | | - |
213 | | - def test_asarray_homogenous(self): |
214 | | - df = DataFrame({"A": pd.Categorical([1, 2]), "B": pd.Categorical([1, 2])}) |
215 | | - result = np.asarray(df) |
216 | | - # may change from object in the future |
217 | | - expected = np.array([[1, 1], [2, 2]], dtype="object") |
218 | | - tm.assert_numpy_array_equal(result, expected) |
219 | | - |
220 | | - def test_str_to_small_float_conversion_type(self): |
221 | | - # GH 20388 |
222 | | - np.random.seed(13) |
223 | | - col_data = [str(np.random.random() * 1e-12) for _ in range(5)] |
224 | | - result = DataFrame(col_data, columns=["A"]) |
225 | | - expected = DataFrame(col_data, columns=["A"], dtype=object) |
226 | | - tm.assert_frame_equal(result, expected) |
227 | | - # change the dtype of the elements from object to float one by one |
228 | | - result.loc[result.index, "A"] = [float(x) for x in col_data] |
229 | | - expected = DataFrame(col_data, columns=["A"], dtype=float) |
230 | | - tm.assert_frame_equal(result, expected) |
0 commit comments