@@ -154,9 +154,9 @@ def group_cumprod_float64(float64_t[:, ::1] out,
154154
155155 Parameters
156156 ----------
157- out : float64 array
157+ out : np.ndarray[np. float64, ndim=2]
158158 Array to store cumprod in.
159- values : float64 array
159+ values : np.ndarray[np. float64, ndim=2]
160160 Values to take cumprod of.
161161 labels : np.ndarray[np.intp]
162162 Labels to group by.
@@ -211,9 +211,9 @@ def group_cumsum(numeric[:, ::1] out,
211211
212212 Parameters
213213 ----------
214- out : array
214+ out : np.ndarray[ndim=2]
215215 Array to store cumsum in.
216- values : array
216+ values : np.ndarray[ndim=2]
217217 Values to take cumsum of.
218218 labels : np.ndarray[np.intp]
219219 Labels to group by.
@@ -329,12 +329,15 @@ def group_fillna_indexer(ndarray[int64_t] out, ndarray[intp_t] labels,
329329
330330 Parameters
331331 ----------
332- out : array of int64_t values which this method will write its results to
333- Missing values will be written to with a value of -1
332+ out : np.ndarray[np.uint8]
333+ Values into which this method will write its results.
334334 labels : np.ndarray[np.intp]
335335 Array containing unique label for each group, with its ordering
336336 matching up to the corresponding record in `values`.
337- mask : array of int64_t values where a 1 indicates a missing value
337+ values : np.ndarray[np.uint8]
338+ Containing the truth value of each element.
339+ mask : np.ndarray[np.uint8]
340+ Indicating whether a value is na or not.
338341 direction : {'ffill', 'bfill'}
339342 Direction for fill to be applied (forwards or backwards, respectively)
340343 limit : Consecutive values to fill before stopping, or -1 for no limit
@@ -396,12 +399,15 @@ def group_any_all(uint8_t[::1] out,
396399
397400 Parameters
398401 ----------
399- out : array of values which this method will write its results to
402+ out : np.ndarray[np.uint8]
403+ Values into which this method will write its results.
400404 labels : np.ndarray[np.intp]
401405 Array containing unique label for each group, with its
402406 ordering matching up to the corresponding record in `values`
403- values : array containing the truth value of each element
404- mask : array indicating whether a value is na or not
407+ values : np.ndarray[np.uint8]
408+ Containing the truth value of each element.
409+ mask : np.ndarray[np.uint8]
410+ Indicating whether a value is na or not.
405411 val_test : {'any', 'all'}
406412 String object dictating whether to use any or all truth testing
407413 skipna : bool
@@ -721,14 +727,17 @@ def group_quantile(ndarray[float64_t] out,
721727
722728 Parameters
723729 ----------
724- out : ndarray
730+ out : np. ndarray[np.float64]
725731 Array of aggregated values that will be written to.
732+ values : np.ndarray
733+ Array containing the values to apply the function against.
726734 labels : ndarray[np.intp]
727735 Array containing the unique group labels.
728736 values : ndarray
729737 Array containing the values to apply the function against.
730738 q : float
731739 The quantile value to search for.
740+ interpolation : {'linear', 'lower', 'highest', 'nearest', 'midpoint'}
732741
733742 Notes
734743 -----
@@ -1048,8 +1057,9 @@ def group_rank(float64_t[:, ::1] out,
10481057
10491058 Parameters
10501059 ----------
1051- out : array of float64_t values which this method will write its results to
1052- values : array of rank_t values to be ranked
1060+ out : np.ndarray[np.float64, ndim=2]
1061+ Values to which this method will write its results.
1062+ values : np.ndarray of rank_t values to be ranked
10531063 labels : np.ndarray[np.intp]
10541064 Array containing unique label for each group, with its ordering
10551065 matching up to the corresponding record in `values`
@@ -1058,8 +1068,7 @@ def group_rank(float64_t[:, ::1] out,
10581068 groupby functions.
10591069 is_datetimelike : bool
10601070 True if `values` contains datetime-like entries.
1061- ties_method : {'average', 'min', 'max', 'first', 'dense'}, default
1062- 'average'
1071+ ties_method : {'average', 'min', 'max', 'first', 'dense'}, default 'average'
10631072 * average: average rank of group
10641073 * min: lowest rank in group
10651074 * max: highest rank in group
@@ -1120,9 +1129,9 @@ cdef group_min_max(groupby_t[:, ::1] out,
11201129
11211130 Parameters
11221131 ----------
1123- out : array
1132+ out : np.ndarray[groupby_t, ndim=2]
11241133 Array to store result in.
1125- counts : int64 array
1134+ counts : np.ndarray[ int64]
11261135 Input as a zeroed array, populated by group sizes during algorithm
11271136 values : array
11281137 Values to find column-wise min/max of.
@@ -1241,9 +1250,9 @@ def group_cummin_max(groupby_t[:, ::1] out,
12411250
12421251 Parameters
12431252 ----------
1244- out : array
1253+ out : np.ndarray[groupby_t, ndim=2]
12451254 Array to store cummin/max in.
1246- values : array
1255+ values : np.ndarray[groupby_t, ndim=2]
12471256 Values to take cummin/max of.
12481257 labels : np.ndarray[np.intp]
12491258 Labels to group by.
0 commit comments