|
240 | 240 | For non-standard datetime parsing, use ``pd.to_datetime`` after ``pd.read_excel``. |
241 | 241 |
|
242 | 242 | Note: A fast-path exists for iso8601-formatted dates. |
243 | | -date_parser : function, optional |
244 | | - Function to use for converting a sequence of string columns to an array of |
245 | | - datetime instances. The default uses ``dateutil.parser.parser`` to do the |
246 | | - conversion. Pandas will try to call `date_parser` in three different ways, |
247 | | - advancing to the next if an exception occurs: 1) Pass one or more arrays |
248 | | - (as defined by `parse_dates`) as arguments; 2) concatenate (row-wise) the |
249 | | - string values from the columns defined by `parse_dates` into a single array |
250 | | - and pass that; and 3) call `date_parser` once for each row using one or |
251 | | - more strings (corresponding to the columns defined by `parse_dates`) as |
252 | | - arguments. |
253 | | -
|
254 | | - .. deprecated:: 2.0.0 |
255 | | - Use ``date_format`` instead, or read in as ``object`` and then apply |
256 | | - :func:`to_datetime` as-needed. |
257 | 243 | date_format : str or dict of column -> format, default ``None`` |
258 | 244 | If used in conjunction with ``parse_dates``, will parse dates according to this |
259 | 245 | format. For anything more complex, |
@@ -398,7 +384,6 @@ def read_excel( |
398 | 384 | na_filter: bool = ..., |
399 | 385 | verbose: bool = ..., |
400 | 386 | parse_dates: list | dict | bool = ..., |
401 | | - date_parser: Callable | lib.NoDefault = ..., |
402 | 387 | date_format: dict[Hashable, str] | str | None = ..., |
403 | 388 | thousands: str | None = ..., |
404 | 389 | decimal: str = ..., |
@@ -436,7 +421,6 @@ def read_excel( |
436 | 421 | na_filter: bool = ..., |
437 | 422 | verbose: bool = ..., |
438 | 423 | parse_dates: list | dict | bool = ..., |
439 | | - date_parser: Callable | lib.NoDefault = ..., |
440 | 424 | date_format: dict[Hashable, str] | str | None = ..., |
441 | 425 | thousands: str | None = ..., |
442 | 426 | decimal: str = ..., |
@@ -474,7 +458,6 @@ def read_excel( |
474 | 458 | na_filter: bool = True, |
475 | 459 | verbose: bool = False, |
476 | 460 | parse_dates: list | dict | bool = False, |
477 | | - date_parser: Callable | lib.NoDefault = lib.no_default, |
478 | 461 | date_format: dict[Hashable, str] | str | None = None, |
479 | 462 | thousands: str | None = None, |
480 | 463 | decimal: str = ".", |
@@ -521,7 +504,6 @@ def read_excel( |
521 | 504 | na_filter=na_filter, |
522 | 505 | verbose=verbose, |
523 | 506 | parse_dates=parse_dates, |
524 | | - date_parser=date_parser, |
525 | 507 | date_format=date_format, |
526 | 508 | thousands=thousands, |
527 | 509 | decimal=decimal, |
@@ -726,7 +708,6 @@ def parse( |
726 | 708 | na_values=None, |
727 | 709 | verbose: bool = False, |
728 | 710 | parse_dates: list | dict | bool = False, |
729 | | - date_parser: Callable | lib.NoDefault = lib.no_default, |
730 | 711 | date_format: dict[Hashable, str] | str | None = None, |
731 | 712 | thousands: str | None = None, |
732 | 713 | decimal: str = ".", |
@@ -795,7 +776,6 @@ def parse( |
795 | 776 | false_values=false_values, |
796 | 777 | na_values=na_values, |
797 | 778 | parse_dates=parse_dates, |
798 | | - date_parser=date_parser, |
799 | 779 | date_format=date_format, |
800 | 780 | thousands=thousands, |
801 | 781 | decimal=decimal, |
@@ -829,7 +809,6 @@ def _parse_sheet( |
829 | 809 | false_values: Iterable[Hashable] | None = None, |
830 | 810 | na_values=None, |
831 | 811 | parse_dates: list | dict | bool = False, |
832 | | - date_parser: Callable | lib.NoDefault = lib.no_default, |
833 | 812 | date_format: dict[Hashable, str] | str | None = None, |
834 | 813 | thousands: str | None = None, |
835 | 814 | decimal: str = ".", |
@@ -942,7 +921,6 @@ def _parse_sheet( |
942 | 921 | na_values=na_values, |
943 | 922 | skip_blank_lines=False, # GH 39808 |
944 | 923 | parse_dates=parse_dates, |
945 | | - date_parser=date_parser, |
946 | 924 | date_format=date_format, |
947 | 925 | thousands=thousands, |
948 | 926 | decimal=decimal, |
@@ -1648,7 +1626,6 @@ def parse( |
1648 | 1626 | nrows: int | None = None, |
1649 | 1627 | na_values=None, |
1650 | 1628 | parse_dates: list | dict | bool = False, |
1651 | | - date_parser: Callable | lib.NoDefault = lib.no_default, |
1652 | 1629 | date_format: str | dict[Hashable, str] | None = None, |
1653 | 1630 | thousands: str | None = None, |
1654 | 1631 | comment: str | None = None, |
@@ -1737,20 +1714,6 @@ def parse( |
1737 | 1714 | ``pd.to_datetime`` after ``pd.read_excel``. |
1738 | 1715 |
|
1739 | 1716 | Note: A fast-path exists for iso8601-formatted dates. |
1740 | | - date_parser : function, optional |
1741 | | - Function to use for converting a sequence of string columns to an array of |
1742 | | - datetime instances. The default uses ``dateutil.parser.parser`` to do the |
1743 | | - conversion. Pandas will try to call `date_parser` in three different ways, |
1744 | | - advancing to the next if an exception occurs: 1) Pass one or more arrays |
1745 | | - (as defined by `parse_dates`) as arguments; 2) concatenate (row-wise) the |
1746 | | - string values from the columns defined by `parse_dates` into a single array |
1747 | | - and pass that; and 3) call `date_parser` once for each row using one or |
1748 | | - more strings (corresponding to the columns defined by `parse_dates`) as |
1749 | | - arguments. |
1750 | | -
|
1751 | | - .. deprecated:: 2.0.0 |
1752 | | - Use ``date_format`` instead, or read in as ``object`` and then apply |
1753 | | - :func:`to_datetime` as-needed. |
1754 | 1717 | date_format : str or dict of column -> format, default ``None`` |
1755 | 1718 | If used in conjunction with ``parse_dates``, will parse dates |
1756 | 1719 | according to this format. For anything more complex, |
@@ -1810,7 +1773,6 @@ def parse( |
1810 | 1773 | nrows=nrows, |
1811 | 1774 | na_values=na_values, |
1812 | 1775 | parse_dates=parse_dates, |
1813 | | - date_parser=date_parser, |
1814 | 1776 | date_format=date_format, |
1815 | 1777 | thousands=thousands, |
1816 | 1778 | comment=comment, |
|
0 commit comments