@@ -1065,7 +1065,7 @@ def from_dict(cls, data, orient='columns', dtype=None, columns=None):
10651065
10661066 Returns
10671067 -------
1068- pandas. DataFrame
1068+ DataFrame
10691069
10701070 See Also
10711071 --------
@@ -1145,7 +1145,7 @@ def to_numpy(self, dtype=None, copy=False):
11451145
11461146 Returns
11471147 -------
1148- array : numpy.ndarray
1148+ numpy.ndarray
11491149
11501150 See Also
11511151 --------
@@ -1439,7 +1439,7 @@ def from_records(cls, data, index=None, exclude=None, columns=None,
14391439
14401440 Returns
14411441 -------
1442- df : DataFrame
1442+ DataFrame
14431443 """
14441444
14451445 # Make a copy of the input columns so we can modify it
@@ -1755,7 +1755,7 @@ def from_items(cls, items, columns=None, orient='columns'):
17551755
17561756 Returns
17571757 -------
1758- frame : DataFrame
1758+ DataFrame
17591759 """
17601760
17611761 warnings .warn ("from_items is deprecated. Please use "
@@ -1866,7 +1866,7 @@ def from_csv(cls, path, header=0, sep=',', index_col=0, parse_dates=True,
18661866
18671867 Returns
18681868 -------
1869- y : DataFrame
1869+ DataFrame
18701870
18711871 See Also
18721872 --------
@@ -1956,7 +1956,7 @@ def to_panel(self):
19561956
19571957 Returns
19581958 -------
1959- panel : Panel
1959+ Panel
19601960 """
19611961 raise NotImplementedError ("Panel is being removed in pandas 0.25.0." )
19621962
@@ -2478,7 +2478,7 @@ def memory_usage(self, index=True, deep=False):
24782478
24792479 Returns
24802480 -------
2481- sizes : Series
2481+ Series
24822482 A Series whose index is the original column names and whose values
24832483 is the memory usage of each column in bytes.
24842484
@@ -2696,7 +2696,7 @@ def get_value(self, index, col, takeable=False):
26962696
26972697 Returns
26982698 -------
2699- value : scalar value
2699+ scalar value
27002700 """
27012701
27022702 warnings .warn ("get_value is deprecated and will be removed "
@@ -2741,7 +2741,7 @@ def set_value(self, index, col, value, takeable=False):
27412741
27422742 Returns
27432743 -------
2744- frame : DataFrame
2744+ DataFrame
27452745 If label pair is contained, will be reference to calling DataFrame,
27462746 otherwise a new object
27472747 """
@@ -3177,7 +3177,7 @@ def select_dtypes(self, include=None, exclude=None):
31773177
31783178 Returns
31793179 -------
3180- subset : DataFrame
3180+ DataFrame
31813181 The subset of the frame including the dtypes in ``include`` and
31823182 excluding the dtypes in ``exclude``.
31833183
@@ -3542,7 +3542,7 @@ def _sanitize_column(self, key, value, broadcast=True):
35423542
35433543 Returns
35443544 -------
3545- sanitized_column : numpy-array
3545+ numpy.ndarray
35463546 """
35473547
35483548 def reindexer (value ):
@@ -3811,7 +3811,7 @@ def drop(self, labels=None, axis=0, index=None, columns=None,
38113811
38123812 Returns
38133813 -------
3814- dropped : pandas. DataFrame
3814+ DataFrame
38153815
38163816 Raises
38173817 ------
@@ -3936,7 +3936,7 @@ def rename(self, *args, **kwargs):
39363936
39373937 Returns
39383938 -------
3939- renamed : DataFrame
3939+ DataFrame
39403940
39413941 See Also
39423942 --------
@@ -4579,7 +4579,7 @@ def drop_duplicates(self, subset=None, keep='first', inplace=False):
45794579
45804580 Returns
45814581 -------
4582- deduplicated : DataFrame
4582+ DataFrame
45834583 """
45844584 if self .empty :
45854585 return self .copy ()
@@ -4613,7 +4613,7 @@ def duplicated(self, subset=None, keep='first'):
46134613
46144614 Returns
46154615 -------
4616- duplicated : Series
4616+ Series
46174617 """
46184618 from pandas .core .sorting import get_group_index
46194619 from pandas ._libs .hashtable import duplicated_int64 , _SIZE_HINT_LIMIT
@@ -4981,7 +4981,7 @@ def swaplevel(self, i=-2, j=-1, axis=0):
49814981
49824982 Returns
49834983 -------
4984- swapped : same type as caller (new object)
4984+ DataFrame
49854985
49864986 .. versionchanged:: 0.18.1
49874987
@@ -5260,7 +5260,7 @@ def combine_first(self, other):
52605260
52615261 Returns
52625262 -------
5263- combined : DataFrame
5263+ DataFrame
52645264
52655265 See Also
52665266 --------
@@ -5621,7 +5621,7 @@ def pivot(self, index=None, columns=None, values=None):
56215621
56225622 Returns
56235623 -------
5624- table : DataFrame
5624+ DataFrame
56255625
56265626 See Also
56275627 --------
@@ -5907,7 +5907,7 @@ def unstack(self, level=-1, fill_value=None):
59075907
59085908 Returns
59095909 -------
5910- unstacked : DataFrame or Series
5910+ Series or DataFrame
59115911
59125912 See Also
59135913 --------
@@ -6073,7 +6073,7 @@ def diff(self, periods=1, axis=0):
60736073
60746074 Returns
60756075 -------
6076- diffed : DataFrame
6076+ DataFrame
60776077
60786078 See Also
60796079 --------
@@ -6345,7 +6345,7 @@ def apply(self, func, axis=0, broadcast=None, raw=False, reduce=None,
63456345
63466346 Returns
63476347 -------
6348- applied : Series or DataFrame
6348+ Series or DataFrame
63496349
63506350 See Also
63516351 --------
@@ -6538,7 +6538,7 @@ def append(self, other, ignore_index=False,
65386538
65396539 Returns
65406540 -------
6541- appended : DataFrame
6541+ DataFrame
65426542
65436543 See Also
65446544 --------
@@ -6956,12 +6956,13 @@ def corr(self, method='pearson', min_periods=1):
69566956
69576957 min_periods : int, optional
69586958 Minimum number of observations required per pair of columns
6959- to have a valid result. Currently only available for pearson
6960- and spearman correlation
6959+ to have a valid result. Currently only available for Pearson
6960+ and Spearman correlation.
69616961
69626962 Returns
69636963 -------
6964- y : DataFrame
6964+ DataFrame
6965+ Correlation matrix.
69656966
69666967 See Also
69676968 --------
@@ -6970,14 +6971,15 @@ def corr(self, method='pearson', min_periods=1):
69706971
69716972 Examples
69726973 --------
6973- >>> histogram_intersection = lambda a, b: np.minimum(a, b
6974- ... ).sum().round(decimals=1)
6974+ >>> def histogram_intersection(a, b):
6975+ ... v = np.minimum(a, b).sum().round(decimals=1)
6976+ ... return v
69756977 >>> df = pd.DataFrame([(.2, .3), (.0, .6), (.6, .0), (.2, .1)],
69766978 ... columns=['dogs', 'cats'])
69776979 >>> df.corr(method=histogram_intersection)
6978- dogs cats
6979- dogs 1.0 0.3
6980- cats 0.3 1.0
6980+ dogs cats
6981+ dogs 1.0 0.3
6982+ cats 0.3 1.0
69816983 """
69826984 numeric_df = self ._get_numeric_data ()
69836985 cols = numeric_df .columns
@@ -7140,10 +7142,11 @@ def corrwith(self, other, axis=0, drop=False, method='pearson'):
71407142 Parameters
71417143 ----------
71427144 other : DataFrame, Series
7145+ Object with which to compute correlations.
71437146 axis : {0 or 'index', 1 or 'columns'}, default 0
7144- 0 or 'index' to compute column-wise, 1 or 'columns' for row-wise
7145- drop : boolean , default False
7146- Drop missing indices from result
7147+ 0 or 'index' to compute column-wise, 1 or 'columns' for row-wise.
7148+ drop : bool , default False
7149+ Drop missing indices from result.
71477150 method : {'pearson', 'kendall', 'spearman'} or callable
71487151 * pearson : standard correlation coefficient
71497152 * kendall : Kendall Tau correlation coefficient
@@ -7155,7 +7158,8 @@ def corrwith(self, other, axis=0, drop=False, method='pearson'):
71557158
71567159 Returns
71577160 -------
7158- correls : Series
7161+ Series
7162+ Pairwise correlations.
71597163
71607164 See Also
71617165 -------
@@ -7485,7 +7489,7 @@ def nunique(self, axis=0, dropna=True):
74857489
74867490 Returns
74877491 -------
7488- nunique : Series
7492+ Series
74897493
74907494 See Also
74917495 --------
@@ -7523,7 +7527,8 @@ def idxmin(self, axis=0, skipna=True):
75237527
75247528 Returns
75257529 -------
7526- idxmin : Series
7530+ Series
7531+ Indexes of minima along the specified axis.
75277532
75287533 Raises
75297534 ------
@@ -7559,7 +7564,8 @@ def idxmax(self, axis=0, skipna=True):
75597564
75607565 Returns
75617566 -------
7562- idxmax : Series
7567+ Series
7568+ Indexes of maxima along the specified axis.
75637569
75647570 Raises
75657571 ------
@@ -7706,7 +7712,7 @@ def quantile(self, q=0.5, axis=0, numeric_only=True,
77067712
77077713 Returns
77087714 -------
7709- quantiles : Series or DataFrame
7715+ Series or DataFrame
77107716
77117717 If ``q`` is an array, a DataFrame will be returned where the
77127718 index is ``q``, the columns are the columns of self, and the
@@ -7776,19 +7782,19 @@ def to_timestamp(self, freq=None, how='start', axis=0, copy=True):
77767782
77777783 Parameters
77787784 ----------
7779- freq : string , default frequency of PeriodIndex
7780- Desired frequency
7785+ freq : str , default frequency of PeriodIndex
7786+ Desired frequency.
77817787 how : {'s', 'e', 'start', 'end'}
77827788 Convention for converting period to timestamp; start of period
7783- vs. end
7789+ vs. end.
77847790 axis : {0 or 'index', 1 or 'columns'}, default 0
7785- The axis to convert (the index by default)
7786- copy : boolean , default True
7787- If false then underlying input data is not copied
7791+ The axis to convert (the index by default).
7792+ copy : bool , default True
7793+ If False then underlying input data is not copied.
77887794
77897795 Returns
77907796 -------
7791- df : DataFrame with DatetimeIndex
7797+ DataFrame with DatetimeIndex
77927798 """
77937799 new_data = self ._data
77947800 if copy :
@@ -7812,15 +7818,16 @@ def to_period(self, freq=None, axis=0, copy=True):
78127818
78137819 Parameters
78147820 ----------
7815- freq : string, default
7821+ freq : str, default
7822+ Frequency of the PeriodIndex.
78167823 axis : {0 or 'index', 1 or 'columns'}, default 0
7817- The axis to convert (the index by default)
7818- copy : boolean , default True
7819- If False then underlying input data is not copied
7824+ The axis to convert (the index by default).
7825+ copy : bool , default True
7826+ If False then underlying input data is not copied.
78207827
78217828 Returns
78227829 -------
7823- ts : TimeSeries with PeriodIndex
7830+ TimeSeries with PeriodIndex
78247831 """
78257832 new_data = self ._data
78267833 if copy :
@@ -7893,7 +7900,7 @@ def isin(self, values):
78937900 match. Note that 'falcon' does not match based on the number of legs
78947901 in df2.
78957902
7896- >>> other = pd.DataFrame({'num_legs': [8, 2],'num_wings': [0, 2]},
7903+ >>> other = pd.DataFrame({'num_legs': [8, 2], 'num_wings': [0, 2]},
78977904 ... index=['spider', 'falcon'])
78987905 >>> df.isin(other)
78997906 num_legs num_wings
0 commit comments