|
15 | 15 | tslib, |
16 | 16 | ) |
17 | 17 | from pandas._libs.tslibs.dtypes import NpyDatetimeUnit |
18 | | -from pandas._libs.tslibs.np_datetime import OutOfBoundsDatetime |
19 | 18 |
|
20 | 19 | from pandas import Timestamp |
21 | 20 | import pandas._testing as tm |
@@ -325,63 +324,3 @@ def test_datetime_subclass(data, expected): |
325 | 324 |
|
326 | 325 | expected = np.array(expected, dtype="M8[us]") |
327 | 326 | tm.assert_numpy_array_equal(result, expected) |
328 | | - |
329 | | - |
330 | | -class TestArrayToDatetimeResolutionInference: |
331 | | - # TODO: tests that include tzs, ints |
332 | | - |
333 | | - def test_infer_homogeoneous_datetimes(self): |
334 | | - dt = datetime(2023, 10, 27, 18, 3, 5, 678000) |
335 | | - arr = np.array([dt, dt, dt], dtype=object) |
336 | | - result, tz = tslib.array_to_datetime(arr, creso=creso_infer) |
337 | | - assert tz is None |
338 | | - expected = np.array([dt, dt, dt], dtype="M8[us]") |
339 | | - tm.assert_numpy_array_equal(result, expected) |
340 | | - |
341 | | - def test_infer_homogeoneous_date_objects(self): |
342 | | - dt = datetime(2023, 10, 27, 18, 3, 5, 678000) |
343 | | - dt2 = dt.date() |
344 | | - arr = np.array([None, dt2, dt2, dt2], dtype=object) |
345 | | - result, tz = tslib.array_to_datetime(arr, creso=creso_infer) |
346 | | - assert tz is None |
347 | | - expected = np.array([np.datetime64("NaT"), dt2, dt2, dt2], dtype="M8[s]") |
348 | | - tm.assert_numpy_array_equal(result, expected) |
349 | | - |
350 | | - def test_infer_homogeoneous_dt64(self): |
351 | | - dt = datetime(2023, 10, 27, 18, 3, 5, 678000) |
352 | | - dt64 = np.datetime64(dt, "ms") |
353 | | - arr = np.array([None, dt64, dt64, dt64], dtype=object) |
354 | | - result, tz = tslib.array_to_datetime(arr, creso=creso_infer) |
355 | | - assert tz is None |
356 | | - expected = np.array([np.datetime64("NaT"), dt64, dt64, dt64], dtype="M8[ms]") |
357 | | - tm.assert_numpy_array_equal(result, expected) |
358 | | - |
359 | | - def test_infer_homogeoneous_timestamps(self): |
360 | | - dt = datetime(2023, 10, 27, 18, 3, 5, 678000) |
361 | | - ts = Timestamp(dt).as_unit("ns") |
362 | | - arr = np.array([None, ts, ts, ts], dtype=object) |
363 | | - result, tz = tslib.array_to_datetime(arr, creso=creso_infer) |
364 | | - assert tz is None |
365 | | - expected = np.array([np.datetime64("NaT")] + [ts.asm8] * 3, dtype="M8[ns]") |
366 | | - tm.assert_numpy_array_equal(result, expected) |
367 | | - |
368 | | - def test_infer_homogeoneous_datetimes_strings(self): |
369 | | - item = "2023-10-27 18:03:05.678000" |
370 | | - arr = np.array([None, item, item, item], dtype=object) |
371 | | - result, tz = tslib.array_to_datetime(arr, creso=creso_infer) |
372 | | - assert tz is None |
373 | | - expected = np.array([np.datetime64("NaT"), item, item, item], dtype="M8[us]") |
374 | | - tm.assert_numpy_array_equal(result, expected) |
375 | | - |
376 | | - def test_infer_heterogeneous(self): |
377 | | - dtstr = "2023-10-27 18:03:05.678000" |
378 | | - |
379 | | - arr = np.array([dtstr, dtstr[:-3], dtstr[:-7], None], dtype=object) |
380 | | - result, tz = tslib.array_to_datetime(arr, creso=creso_infer) |
381 | | - assert tz is None |
382 | | - expected = np.array(arr, dtype="M8[us]") |
383 | | - tm.assert_numpy_array_equal(result, expected) |
384 | | - |
385 | | - result, tz = tslib.array_to_datetime(arr[::-1], creso=creso_infer) |
386 | | - assert tz is None |
387 | | - tm.assert_numpy_array_equal(result, expected[::-1]) |
0 commit comments