@@ -3924,22 +3924,36 @@ def shift(self, periods=1, freq=None, axis=0):
39243924 def set_index (self , keys , drop = True , append = False , inplace = False ,
39253925 verify_integrity = False ):
39263926 """
3927+ Set the DataFrame index using existing columns.
3928+
39273929 Set the DataFrame index (row labels) using one or more existing
3928- columns. By default yields a new object .
3930+ columns. The index can replace the existing index or expand on it .
39293931
39303932 Parameters
39313933 ----------
3932- keys : column label or list of column labels / arrays
3933- drop : boolean, default True
3934- Delete columns to be used as the new index
3935- append : boolean, default False
3936- Whether to append columns to existing index
3937- inplace : boolean, default False
3938- Modify the DataFrame in place (do not create a new object)
3939- verify_integrity : boolean, default False
3934+ keys : label or list of label
3935+ Name or names of the columns that will be used as the index.
3936+ drop : bool, default True
3937+ Delete columns to be used as the new index.
3938+ append : bool, default False
3939+ Whether to append columns to existing index.
3940+ inplace : bool, default False
3941+ Modify the DataFrame in place (do not create a new object).
3942+ verify_integrity : bool, default False
39403943 Check the new index for duplicates. Otherwise defer the check until
39413944 necessary. Setting to False will improve the performance of this
3942- method
3945+ method.
3946+
3947+ Returns
3948+ -------
3949+ DataFrame
3950+ Changed row labels.
3951+
3952+ See Also
3953+ --------
3954+ DataFrame.reset_index : Opposite of set_index.
3955+ DataFrame.reindex : Change to new indices or expand indices.
3956+ DataFrame.reindex_like : Change to same indices as other DataFrame.
39433957
39443958 Returns
39453959 -------
@@ -3949,22 +3963,23 @@ def set_index(self, keys, drop=True, append=False, inplace=False,
39493963 --------
39503964 >>> df = pd.DataFrame({'month': [1, 4, 7, 10],
39513965 ... 'year': [2012, 2014, 2013, 2014],
3952- ... 'sale':[55, 40, 84, 31]})
3953- month sale year
3954- 0 1 55 2012
3955- 1 4 40 2014
3956- 2 7 84 2013
3957- 3 10 31 2014
3966+ ... 'sale': [55, 40, 84, 31]})
3967+ >>> df
3968+ month year sale
3969+ 0 1 2012 55
3970+ 1 4 2014 40
3971+ 2 7 2013 84
3972+ 3 10 2014 31
39583973
39593974 Set the index to become the 'month' column:
39603975
39613976 >>> df.set_index('month')
3962- sale year
3977+ year sale
39633978 month
3964- 1 55 2012
3965- 4 40 2014
3966- 7 84 2013
3967- 10 31 2014
3979+ 1 2012 55
3980+ 4 2014 40
3981+ 7 2013 84
3982+ 10 2014 31
39683983
39693984 Create a multi-index using columns 'year' and 'month':
39703985
@@ -4072,22 +4087,22 @@ def set_index(self, keys, drop=True, append=False, inplace=False,
40724087 def reset_index (self , level = None , drop = False , inplace = False , col_level = 0 ,
40734088 col_fill = '' ):
40744089 """
4075- For DataFrame with multi-level index, return new DataFrame with
4076- labeling information in the columns under the index names, defaulting
4077- to 'level_0', 'level_1', etc. if any are None. For a standard index,
4078- the index name will be used (if set), otherwise a default 'index' or
4079- 'level_0' (if 'index' is already taken) will be used .
4090+ Reset the index, or a level of it.
4091+
4092+ Reset the index of the DataFrame, and use the default one instead.
4093+ If the DataFrame has a MultiIndex, this method can remove one or more
4094+ levels .
40804095
40814096 Parameters
40824097 ----------
40834098 level : int, str, tuple, or list, default None
40844099 Only remove the given levels from the index. Removes all levels by
4085- default
4086- drop : boolean , default False
4100+ default.
4101+ drop : bool , default False
40874102 Do not try to insert index into dataframe columns. This resets
40884103 the index to the default integer index.
4089- inplace : boolean , default False
4090- Modify the DataFrame in place (do not create a new object)
4104+ inplace : bool , default False
4105+ Modify the DataFrame in place (do not create a new object).
40914106 col_level : int or str, default 0
40924107 If the columns have multiple levels, determines which level the
40934108 labels are inserted into. By default it is inserted into the first
@@ -4098,13 +4113,20 @@ def reset_index(self, level=None, drop=False, inplace=False, col_level=0,
40984113
40994114 Returns
41004115 -------
4101- resetted : DataFrame
4116+ DataFrame
4117+ DataFrame with the new index.
4118+
4119+ See Also
4120+ --------
4121+ DataFrame.set_index : Opposite of reset_index.
4122+ DataFrame.reindex : Change to new indices or expand indices.
4123+ DataFrame.reindex_like : Change to same indices as other DataFrame.
41024124
41034125 Examples
41044126 --------
4105- >>> df = pd.DataFrame([('bird', 389.0),
4106- ... ('bird', 24.0),
4107- ... ('mammal', 80.5),
4127+ >>> df = pd.DataFrame([('bird', 389.0),
4128+ ... ('bird', 24.0),
4129+ ... ('mammal', 80.5),
41084130 ... ('mammal', np.nan)],
41094131 ... index=['falcon', 'parrot', 'lion', 'monkey'],
41104132 ... columns=('class', 'max_speed'))
0 commit comments