@@ -3900,26 +3900,26 @@ def interp(
39003900 determine which interpolant is used:
39013901
39023902 1. **Interpolation along one dimension of 1D data (`method='linear'`)**
3903- - Uses :py:class:`numpy.interp`, unless `fill_value='extrapolate'` is provided via `kwargs`.
3903+ - Uses :py:class:`numpy.interp`, unless `fill_value='extrapolate'` is provided via `kwargs`.
39043904
39053905 2. **Interpolation along one dimension of N-dimensional data (N ≥ 1)**
3906- - Methods {"linear", "nearest", "zero", "slinear", "quadratic", "cubic", "quintic", "polynomial"}
3907- use :py:class:`scipy.interpolate.interp1d`, unless conditions permit the use of :py:class:`numpy.interp`
3908- (as in the case of `method='linear'` for 1D data).
3909- - If `method='polynomial'`, the `order` keyword argument must also be provided. In this case,
3910- :py:class:`scipy.interpolate.interp1d` is called with `kind=order`.
3906+ - Methods {"linear", "nearest", "zero", "slinear", "quadratic", "cubic", "quintic", "polynomial"}
3907+ use :py:class:`scipy.interpolate.interp1d`, unless conditions permit the use of :py:class:`numpy.interp`
3908+ (as in the case of `method='linear'` for 1D data).
3909+ - If `method='polynomial'`, the `order` keyword argument must also be provided. In this case,
3910+ :py:class:`scipy.interpolate.interp1d` is called with `kind=order`.
39113911
39123912 3. **Special interpolants for interpolation along one dimension of N-dimensional data (N ≥ 1)**
3913- - Depending on the `method`, the following interpolants from :py:class:`scipy.interpolate` are used:
3914- - `"pchip"`: :py:class:`scipy.interpolate.PchipInterpolator`
3915- - `"barycentric"`: :py:class:`scipy.interpolate.BarycentricInterpolator`
3916- - `"krogh"`: :py:class:`scipy.interpolate.KroghInterpolator`
3917- - `"akima"` or `"makima"`: :py:class:`scipy.interpolate.Akima1dInterpolator`
3918- (`makima` is handled by passing `makima` to `method`).
3913+ - Depending on the `method`, the following interpolants from :py:class:`scipy.interpolate` are used:
3914+ - `"pchip"`: :py:class:`scipy.interpolate.PchipInterpolator`
3915+ - `"barycentric"`: :py:class:`scipy.interpolate.BarycentricInterpolator`
3916+ - `"krogh"`: :py:class:`scipy.interpolate.KroghInterpolator`
3917+ - `"akima"` or `"makima"`: :py:class:`scipy.interpolate.Akima1dInterpolator`
3918+ (`makima` is handled by passing `makima` to `method`).
39193919
39203920 4. **Interpolation along multiple dimensions of multi-dimensional data**
3921- - Uses :py:func:`scipy.interpolate.interpn` for methods {"linear", "nearest", "slinear",
3922- "cubic", "quintic", "pchip"}.
3921+ - Uses :py:func:`scipy.interpolate.interpn` for methods {"linear", "nearest", "slinear",
3922+ "cubic", "quintic", "pchip"}.
39233923
39243924 Out-of-range values are filled with NaN, unless specified otherwise via `kwargs` to the numpy/scipy interpolant.
39253925
@@ -4202,26 +4202,26 @@ def interp_like(
42024202 determine which interpolant is used:
42034203
42044204 1. **Interpolation along one dimension of 1D data (`method='linear'`)**
4205- - Uses :py:class:`numpy.interp`, unless `fill_value='extrapolate'` is provided via `kwargs`.
4205+ - Uses :py:class:`numpy.interp`, unless `fill_value='extrapolate'` is provided via `kwargs`.
42064206
42074207 2. **Interpolation along one dimension of N-dimensional data (N ≥ 1)**
4208- - Methods {"linear", "nearest", "zero", "slinear", "quadratic", "cubic", "quintic", "polynomial"}
4209- use :py:class:`scipy.interpolate.interp1d`, unless conditions permit the use of :py:class:`numpy.interp`
4210- (as in the case of `method='linear'` for 1D data).
4211- - If `method='polynomial'`, the `order` keyword argument must also be provided. In this case,
4212- :py:class:`scipy.interpolate.interp1d` is called with `kind=order`.
4208+ - Methods {"linear", "nearest", "zero", "slinear", "quadratic", "cubic", "quintic", "polynomial"}
4209+ use :py:class:`scipy.interpolate.interp1d`, unless conditions permit the use of :py:class:`numpy.interp`
4210+ (as in the case of `method='linear'` for 1D data).
4211+ - If `method='polynomial'`, the `order` keyword argument must also be provided. In this case,
4212+ :py:class:`scipy.interpolate.interp1d` is called with `kind=order`.
42134213
42144214 3. **Special interpolants for interpolation along one dimension of N-dimensional data (N ≥ 1)**
4215- - Depending on the `method`, the following interpolants from :py:class:`scipy.interpolate` are used:
4216- - `"pchip"`: :py:class:`scipy.interpolate.PchipInterpolator`
4217- - `"barycentric"`: :py:class:`scipy.interpolate.BarycentricInterpolator`
4218- - `"krogh"`: :py:class:`scipy.interpolate.KroghInterpolator`
4219- - `"akima"` or `"makima"`: :py:class:`scipy.interpolate.Akima1dInterpolator`
4220- (`makima` is handled by passing `makima` to `method`).
4215+ - Depending on the `method`, the following interpolants from :py:class:`scipy.interpolate` are used:
4216+ - `"pchip"`: :py:class:`scipy.interpolate.PchipInterpolator`
4217+ - `"barycentric"`: :py:class:`scipy.interpolate.BarycentricInterpolator`
4218+ - `"krogh"`: :py:class:`scipy.interpolate.KroghInterpolator`
4219+ - `"akima"` or `"makima"`: :py:class:`scipy.interpolate.Akima1dInterpolator`
4220+ (`makima` is handled by passing `makima` to `method`).
42214221
42224222 4. **Interpolation along multiple dimensions of multi-dimensional data**
4223- - Uses :py:func:`scipy.interpolate.interpn` for methods {"linear", "nearest", "slinear",
4224- "cubic", "quintic", "pchip"}.
4223+ - Uses :py:func:`scipy.interpolate.interpn` for methods {"linear", "nearest", "slinear",
4224+ "cubic", "quintic", "pchip"}.
42254225
42264226 Out-of-range values are filled with NaN, unless specified otherwise via `kwargs` to the numpy/scipy interpolant.
42274227
0 commit comments