@@ -35,44 +35,44 @@ The implementation of these functions is specific to the type of arrays passed t
3535whereas :py:class: `cubed.Array ` objects must be processed by :py:func: `cubed.map_blocks `.
3636
3737In order to use the correct implementation of a core operation for the array type encountered, xarray dispatches to the
38- corresponding subclass of :py:class: `~xarray.core .parallelcompat.ChunkManagerEntrypoint `,
38+ corresponding subclass of :py:class: `~xarray.namedarray .parallelcompat.ChunkManagerEntrypoint `,
3939also known as a "Chunk Manager". Therefore **a full list of the operations that need to be defined is set by the
40- API of the ** :py:class: `~xarray.core .parallelcompat.ChunkManagerEntrypoint ` **abstract base class **. Note that chunked array
40+ API of the ** :py:class: `~xarray.namedarray .parallelcompat.ChunkManagerEntrypoint ` **abstract base class **. Note that chunked array
4141methods are also currently dispatched using this class.
4242
4343Chunked array creation is also handled by this class. As chunked array objects have a one-to-one correspondence with
4444in-memory numpy arrays, it should be possible to create a chunked array from a numpy array by passing the desired
45- chunking pattern to an implementation of :py:class: `~xarray.core .parallelcompat.ChunkManagerEntrypoint.from_array` `.
45+ chunking pattern to an implementation of :py:class: `~xarray.namedarray .parallelcompat.ChunkManagerEntrypoint.from_array` `.
4646
4747.. note ::
4848
49- The :py:class: `~xarray.core .parallelcompat.ChunkManagerEntrypoint ` abstract base class is mostly just acting as a
49+ The :py:class: `~xarray.namedarray .parallelcompat.ChunkManagerEntrypoint ` abstract base class is mostly just acting as a
5050 namespace for containing the chunked-aware function primitives. Ideally in the future we would have an API standard
5151 for chunked array types which codified this structure, making the entrypoint system unnecessary.
5252
53- .. currentmodule :: xarray.core .parallelcompat
53+ .. currentmodule :: xarray.namedarray .parallelcompat
5454
55- .. autoclass :: xarray.core .parallelcompat.ChunkManagerEntrypoint
55+ .. autoclass :: xarray.namedarray .parallelcompat.ChunkManagerEntrypoint
5656 :members:
5757
5858Registering a new ChunkManagerEntrypoint subclass
5959~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
6060
6161Rather than hard-coding various chunk managers to deal with specific chunked array implementations, xarray uses an
6262entrypoint system to allow developers of new chunked array implementations to register their corresponding subclass of
63- :py:class: `~xarray.core .parallelcompat.ChunkManagerEntrypoint `.
63+ :py:class: `~xarray.namedarray .parallelcompat.ChunkManagerEntrypoint `.
6464
6565
6666To register a new entrypoint you need to add an entry to the ``setup.cfg `` like this::
6767
6868 [options.entry_points]
6969 xarray.chunkmanagers =
70- dask = xarray.core .daskmanager:DaskManager
70+ dask = xarray.namedarray .daskmanager:DaskManager
7171
7272See also `cubed-xarray <https://github.com/xarray-contrib/cubed-xarray >`_ for another example.
7373
7474To check that the entrypoint has worked correctly, you may find it useful to display the available chunkmanagers using
75- the internal function :py:func: `~xarray.core .parallelcompat.list_chunkmanagers `.
75+ the internal function :py:func: `~xarray.namedarray .parallelcompat.list_chunkmanagers `.
7676
7777.. autofunction :: list_chunkmanagers
7878
0 commit comments