@@ -57,9 +57,9 @@ An integer sequence need not necessarily be a degree sequence. Indeed, in a
5757degree sequence of length `n` no integer can be larger than `n-1` -- the degree 
5858of a vertex is at most `n-1` -- and the sum of them is at most `n( n-1) `.  
5959
60- Degree sequences are completely characterized by a result from Erdos  and Gallai: 
60+ Degree sequences are completely characterized by a result from Erdős  and Gallai: 
6161
62- ** Erdos  and Gallai:**  * The sequence of integers*  `d_1 \g eq \c dots \g eq d_n`
62+ ** Erdős  and Gallai:**  * The sequence of integers*  `d_1 \g eq \c dots \g eq d_n`
6363* is a degree sequence if and only if*  `\s um_i d_i` is even and `\f orall i`
6464
6565..  MATH::
@@ -281,6 +281,7 @@ from cysignals.signals cimport sig_on, sig_off
281281cdef unsigned  char  *  seq
282282cdef list  sequences
283283
284+ 
284285class  DegreeSequences :
285286
286287    def  __init__  (self , n ):
@@ -307,16 +308,16 @@ class DegreeSequences:
307308            sage: DegreeSequences( -1)  
308309            Traceback ( most recent call last) : 
309310            ...  
310-             ValueError: The  input parameter must be >= 0.  
311+             ValueError: the  input parameter must be >= 0 
311312        """  
312313        if  n <  0 :
313-             raise  ValueError (" The  input parameter must be >= 0. "  )
314+             raise  ValueError (" the  input parameter must be >= 0"  )
314315        self ._n =  n
315316
316317    def  __contains__  (self , seq ):
317318        """ 
318-         Checks  whether a given integer sequence is the degree sequence 
319-         of a graph on `n` elements 
319+         Check  whether a given integer sequence is the degree sequence 
320+         of a graph on `n` elements.  
320321
321322        EXAMPLES:: 
322323
@@ -342,7 +343,7 @@ class DegreeSequences:
342343            [[0]] 
343344        """  
344345        cdef int  n =  self ._n
345-         if  len (seq)! = n:
346+         if  len (seq) ! =   n:
346347            return  False 
347348
348349        #  Is the sum even ?
@@ -352,13 +353,13 @@ class DegreeSequences:
352353        #  Partial represents the left side of Erdos and Gallai's inequality,
353354        #  i.e. the sum of the i first integers.
354355        cdef int  partial =  0 
355-         cdef int  i,d, dd, right
356+         cdef int  i, d,  dd, right
356357
357358        #  Temporary variable to ensure that the sequence is indeed
358359        #  non-increasing
359-         cdef int  prev =  n- 1 
360+         cdef int  prev =  n  -   1 
360361
361-         for  i,d in  enumerate (seq):
362+         for  i,  d in  enumerate (seq):
362363
363364            #  Non-increasing ?
364365            if  d >  prev:
@@ -370,9 +371,9 @@ class DegreeSequences:
370371            partial +=  d
371372
372373            #  Evaluating the right hand side
373-             right =  i* (i + 1 )
374-             for  dd in  seq[i+ 1 :]:
375-                 right +=  min (dd,i + 1 )
374+             right =  i  *  (i  +   1 )
375+             for  dd in  seq[i  +   1 :]:
376+                 right +=  min (dd, i  +   1 )
376377
377378            #  Comparing the two
378379            if  partial >  right:
@@ -404,14 +405,15 @@ class DegreeSequences:
404405            sage: all(seq in DS for seq in DS) 
405406            True 
406407        """  
407-         return   iter (  init(self ._n)  )
408+         yield   from  init(self ._n)
408409
409410    def  __dealloc__ ():
410411        """ 
411412        Freeing the memory 
412413        """  
413414        sig_free(seq)
414415
416+ 
415417cdef init(int  n):
416418    """ 
417419    Initializes the memory and starts the enumeration algorithm. 
@@ -432,7 +434,7 @@ cdef init(int n):
432434
433435    N =  n
434436    sequences =  []
435-     enum (1 ,0 )
437+     enum (1 ,  0 )
436438    sig_free(seq)
437439    return  sequences
438440
@@ -467,7 +469,7 @@ cdef void enum(int k, int M):
467469    - ``k`` -- depth of the partial degree sequence 
468470    - ``M`` -- value of a maximum element in the partial degree sequence 
469471    """  
470-     cdef int  i,j
472+     cdef int  i,  j
471473    global  seq
472474    cdef int  taken =  0 
473475    cdef int  current_box
@@ -491,21 +493,21 @@ cdef void enum(int k, int M):
491493    if  M ==  0 :
492494
493495        seq[0 ] +=  1 
494-         enum (k+ 1 , M)
496+         enum (k  +   1 , M)
495497        seq[0 ] -=  1 
496498
497499    #  We need not automatically increase the degree at each step. In this case,
498500    #  we have no other choice but to link the new vertex of degree M to vertices
499501    #  of degree M-1, which will become vertices of degree M too.
500-     elif  seq[M- 1 ] >=  M:
502+     elif  seq[M  -   1 ] >=  M:
501503
502-         seq[M]    +=  M+ 1 
503-         seq[M- 1 ] -=  M
504+         seq[M] +=  M  +   1 
505+         seq[M  -   1 ] -=  M
504506
505-         enum (k+ 1 , M)
507+         enum (k  +   1 , M)
506508
507-         seq[M]    -=  M+ 1 
508-         seq[M- 1 ] +=  M
509+         seq[M] -=  M  +   1 
510+         seq[M  -   1 ] +=  M
509511
510512    # ##############################################
511513    #  Creating vertices of Vertices of degree > M #
@@ -542,13 +544,13 @@ cdef void enum(int k, int M):
542544            seq[current_box] -=  i
543545            seq[current_box+ 1 ] +=  i
544546
545-             for  max (0 ,((M+ 1 )- taken- i)) <=  j <=  n_previous_box:
547+             for  max (0 ,  ((M+ 1 )- taken- i)) <=  j <=  n_previous_box:
546548                seq[current_box- 1 ] -=  j
547549                seq[current_box] +=  j
548550
549551                new_vertex =  taken +  i +  j
550552                seq[new_vertex] +=  1 
551-                 enum (k+ 1 ,new_vertex)
553+                 enum (k+ 1 ,  new_vertex)
552554                seq[new_vertex] -=  1 
553555
554556                seq[current_box- 1 ] +=  j
@@ -566,7 +568,7 @@ cdef void enum(int k, int M):
566568    #  Now current_box = 0. All the vertices of nonzero degree are taken, we just
567569    #  want to know how many vertices of degree 0 will be neighbors of the new
568570    #  vertex.
569-     for  max (0 ,((M+ 1 )- taken)) <=  i <=  seq[0 ]:
571+     for  max (0 ,  ((M+ 1 )- taken)) <=  i <=  seq[0 ]:
570572
571573        seq[1 ] +=  i
572574        seq[0 ] -=  i
0 commit comments