@@ -2240,13 +2240,12 @@ class LazyCompletionGradedAlgebra(LazySeriesRing):
22402240
22412241 EXAMPLES::
22422242
2243- sage: NCSF = NonCommutativeSymmetricFunctions(QQ) # needs sage.modules
2244- sage: S = NCSF.Complete() # needs sage.modules
2245- sage: L = S.formal_series_ring(); L # needs sage.modules
2243+ sage: # needs sage.modules
2244+ sage: NCSF = NonCommutativeSymmetricFunctions(QQ)
2245+ sage: S = NCSF.Complete()
2246+ sage: L = S.formal_series_ring(); L
22462247 Lazy completion of Non-Commutative Symmetric Functions
22472248 over the Rational Field in the Complete basis
2248-
2249- sage: # needs sage.modules
22502249 sage: f = 1 / (1 - L(S[1])); f
22512250 S[] + S[1] + (S[1,1]) + (S[1,1,1]) + (S[1,1,1,1]) + (S[1,1,1,1,1])
22522251 + (S[1,1,1,1,1,1]) + O^7
@@ -2275,23 +2274,23 @@ def __init__(self, basis, sparse=True, category=None):
22752274
22762275 sage: LazySymmetricFunctions.options.halting_precision(6)
22772276
2278- sage: s = SymmetricFunctions(QQ).s() # needs sage.modules
2279- sage: L = LazySymmetricFunctions(s) # needs sage.modules
2280- sage: TestSuite(L).run() # needs lrcalc_python sage.modules
2281-
2282- sage: p = SymmetricFunctions(GF(5)).p() # needs sage.modules
2283- sage: L = LazySymmetricFunctions(p) # needs sage.modules
2284- sage: TestSuite(L).run() # needs sage.modules
2277+ sage: # needs sage.modules
2278+ sage: s = SymmetricFunctions(QQ).s()
2279+ sage: L = LazySymmetricFunctions(s)
2280+ sage: TestSuite(L).run() # needs lrcalc_python
2281+ sage: p = SymmetricFunctions(GF(5)).p()
2282+ sage: L = LazySymmetricFunctions(p)
2283+ sage: TestSuite(L).run()
22852284
22862285 Reversion will only work when the base ring is a field::
22872286
2288- sage: s = SymmetricFunctions(ZZ).s() # needs sage.modules
2289- sage: L = LazySymmetricFunctions(s) # needs sage.modules
2290- sage: TestSuite(L).run(skip=['_test_revert']) # needs lrcalc_python sage.modules
2291-
2292- sage: s = SymmetricFunctions(QQ["q"]).s() # needs sage.modules
2293- sage: L = LazySymmetricFunctions(s) # needs sage.modules
2294- sage: TestSuite(L).run(skip=['_test_revert']) # needs lrcalc_python sage.modules
2287+ sage: # needs sage.modules
2288+ sage: s = SymmetricFunctions(ZZ).s()
2289+ sage: L = LazySymmetricFunctions(s)
2290+ sage: TestSuite(L).run(skip=['_test_revert']) # needs lrcalc_python
2291+ sage: s = SymmetricFunctions(QQ["q"]).s()
2292+ sage: L = LazySymmetricFunctions(s)
2293+ sage: TestSuite(L).run(skip=['_test_revert']) # needs lrcalc_python
22952294
22962295 Options are remembered across doctests::
22972296
@@ -2399,22 +2398,22 @@ def _element_constructor_(self, x=None, valuation=None, degree=None, constant=No
23992398
24002399 EXAMPLES::
24012400
2402- sage: # needs sage.modules sage.rings.finite_rings
2401+ sage: # needs sage.modules
24032402 sage: m = SymmetricFunctions(GF(2)).m()
24042403 sage: L = LazySymmetricFunctions(m)
24052404 sage: L(2)
24062405 0
24072406 sage: L(3)
24082407 m[]
24092408
2410- sage: m = SymmetricFunctions(ZZ).m() # needs sage.modules
2411- sage: L = LazySymmetricFunctions(m) # needs sage.modules
2412- sage: f = L(lambda i: m([i]), valuation=5, degree=10); f # needs sage.modules
2409+ sage: # needs sage.modules
2410+ sage: m = SymmetricFunctions(ZZ).m()
2411+ sage: L = LazySymmetricFunctions(m)
2412+ sage: f = L(lambda i: m([i]), valuation=5, degree=10); f
24132413 m[5] + m[6] + m[7] + m[8] + m[9]
2414-
2415- sage: f.coefficient(6) # needs sage.modules
2414+ sage: f.coefficient(6)
24162415 m[6]
2417- sage: f[20] # needs sage.modules
2416+ sage: f[20]
24182417 0
24192418
24202419 Alternatively, ``x`` can be a list of elements of the base ring.
@@ -2442,22 +2441,20 @@ def _element_constructor_(self, x=None, valuation=None, degree=None, constant=No
24422441 sage: L(lambda n: 0)
24432442 O^7
24442443
2445- sage: L(lambda n: tensor([h[n], e([])]) + tensor([h([]), e[n]]), degree=3) # needs sage.modules
2444+ sage: # needs sage.modules
2445+ sage: L(lambda n: tensor([h[n], e([])]) + tensor([h([]), e[n]]), degree=3)
24462446 (2*h[]#e[]) + (h[]#e[1]+h[1]#e[]) + (h[]#e[2]+h[2]#e[])
2447-
2448- sage: L(lambda n: n)[3]; # needs sage.modules
2447+ sage: L(lambda n: n)[3];
24492448 Traceback (most recent call last):
24502449 ...
24512450 ValueError: coefficient 3*h[] # e[] should be an element
24522451 of homogeneous degree 3 but has degree 0
2453-
2454- sage: L([1, 2, 3]); # needs sage.modules
2452+ sage: L([1, 2, 3]);
24552453 Traceback (most recent call last):
24562454 ...
24572455 ValueError: coefficient 2*h[] # e[] should be an element
24582456 of homogeneous degree 1 but has degree 0
2459-
2460- sage: L(lambda n: n, degree=3); # needs sage.modules
2457+ sage: L(lambda n: n, degree=3);
24612458 Traceback (most recent call last):
24622459 ...
24632460 ValueError: coefficient h[] # e[] should be an element
0 commit comments