diff --git a/.gitignore b/.gitignore index e43b0f9..2608ec2 100644 --- a/.gitignore +++ b/.gitignore @@ -1 +1,2 @@ .DS_Store +.vscode \ No newline at end of file diff --git a/plonk-intro-cn/2-plonk-lagrange-basis.md b/plonk-intro-cn/2-plonk-lagrange-basis.md index 37dee97..feb1f45 100644 --- a/plonk-intro-cn/2-plonk-lagrange-basis.md +++ b/plonk-intro-cn/2-plonk-lagrange-basis.md @@ -227,10 +227,10 @@ $$ 还拿 $\mathbb{F}_{13}$ 为例,我们取 $H=(1,5,12,8)$,并且乘法群的生成元 $g=2$。于是我们可以得到下面两个 Coset: $$ -\begin{split} -H_1 &= g\cdot H = (g, g\omega, g\omega^2, g\omega^3) &= (2,10,11,3) \\ -H_2 &= g^2\cdot H = (g^2, g^2\omega, g^2\omega^2, g^2\omega^3) &= (4,7,9,6) \\ -\end{split} +\begin{aligned} +H_1 &= g\cdot H = (g, g\omega, g\omega^2, g\omega^3) = (2,10,11,3) \\ +H_2 &= g^2\cdot H = (g^2, g^2\omega, g^2\omega^2, g^2\omega^3) = (4,7,9,6) \\ +\end{aligned} $$ 可以看到 $\mathbb{F}^*_{13}=H\cup H_1 \cup H_2$,并且它们交集为空,没有任何重叠。并且它们的 Vanishing Polynomial 也可以快速计算: diff --git a/plonk-intro-cn/3-plonk-permutation.md b/plonk-intro-cn/3-plonk-permutation.md index fbc4522..080e7b4 100644 --- a/plonk-intro-cn/3-plonk-permutation.md +++ b/plonk-intro-cn/3-plonk-permutation.md @@ -113,9 +113,9 @@ $$ \begin{array}{c|c|c} q_i & r_i & q_i\cdot r_i \\ \hline -q_0 & 1 & r_0\\ -q_1 & r_0 & r_1\\ -q_2 & r_1 & r_2\\ +q_0 & r_0=1 & r_1\\ +q_1 & r_1 & r_2\\ +q_2 & r_2 & r_3\\ \vdots & \vdots & \vdots\\ q_{n-2} & r_{n-2} & r_{n-1}\\ q_{n-1}=\frac{1}{p} & r_{n-1} & 1 \\