Skip to content

Commit 5c67f94

Browse files
authored
Merge pull request #9 from stemangiola/comply-Bioconductor
Comply bioconductor
2 parents b3e611e + 3066349 commit 5c67f94

20 files changed

+565
-369
lines changed

DESCRIPTION

Lines changed: 6 additions & 9 deletions
Original file line numberDiff line numberDiff line change
@@ -1,14 +1,11 @@
11
Type: Package
22
Package: tidySCE
3-
Title: 'Brings SingleCellExperiment to the Tidyverse
3+
Title: Brings SingleCellExperiment to the Tidyverse
44
Version: 0.99.0
55
Authors@R: c(person("Stefano", "Mangiola", email = "[email protected]",
66
role = c("aut", "cre")) )
7-
Description: tidySCE creates an invisible layer that enables using the
8-
Bioconductor 'SingleCellExperiment' object as a tibble and interacting
9-
seamlessly with the tidyverse. Tidyverse packages such as dplyr, tidyr,
10-
ggplot and plotly can all be used with the tidy SingleCellExperiment object.
11-
This allows users to get the best of both Bioconductor and tidyverse worlds.
7+
Description: tidySCE is an adapter that abstracts the 'SingleCellExperiment' container
8+
in the form of tibble and allows the data manipulation, plotting and nesting using 'tidyverse'
129
License: GPL-3
1310
Depends:
1411
R (>= 4.0.0),
@@ -24,10 +21,10 @@ Imports:
2421
lifecycle,
2522
methods,
2623
plotly,
27-
ellipsis,
28-
tidyselect,
2924
utils,
30-
S4Vectors
25+
S4Vectors,
26+
tidyselect,
27+
ellipsis
3128
Suggests:
3229
BiocStyle,
3330
testthat,

NAMESPACE

Lines changed: 5 additions & 1 deletion
Original file line numberDiff line numberDiff line change
@@ -18,7 +18,7 @@ S3method(filter,default)
1818
S3method(filter,tidySCE)
1919
S3method(full_join,default)
2020
S3method(full_join,tidySCE)
21-
S3method(ggplot,default)
21+
S3method(ggplot,tbl_df)
2222
S3method(ggplot,tidySCE)
2323
S3method(group_by,default)
2424
S3method(group_by,tidySCE)
@@ -95,12 +95,15 @@ export(unite)
9595
export(unnest)
9696
import(SingleCellExperiment)
9797
importFrom(S4Vectors,DataFrame)
98+
importFrom(SingleCellExperiment,colData)
9899
importFrom(dplyr,count)
99100
importFrom(dplyr,group_by_drop_default)
100101
importFrom(dplyr,mutate)
101102
importFrom(dplyr,pull)
102103
importFrom(dplyr,select)
103104
importFrom(dplyr,select_if)
105+
importFrom(ellipsis,check_dots_unnamed)
106+
importFrom(ellipsis,check_dots_used)
104107
importFrom(ggplot2,aes)
105108
importFrom(magrittr,"%$%")
106109
importFrom(magrittr,"%>%")
@@ -128,4 +131,5 @@ importFrom(tidyr,nest)
128131
importFrom(tidyr,pivot_longer)
129132
importFrom(tidyr,spread)
130133
importFrom(tidyr,unnest)
134+
importFrom(tidyselect,eval_select)
131135
importFrom(utils,tail)

R/data.R

Lines changed: 36 additions & 4 deletions
Original file line numberDiff line numberDiff line change
@@ -1,14 +1,46 @@
1-
#' Example data set
1+
#' pbmc_small
22
#'
3+
#' PBMC single cell RNA-seq data in SingleCellExperiment format
34
#'
5+
#' @format A SingleCellExperiment object containing 80 Peripheral Blood
6+
#' Mononuclear Cells (PBMC) from 10x Genomics. Generated by subsampling the PBMC dataset of 2,700 single cells.
7+
#' @source \url{https://satijalab.org/seurat/v3.1/pbmc3k_tutorial.html}
8+
#' @usage data(pbmc_small)
49
"pbmc_small"
510

6-
#' Example data set 2
7-
#'
11+
#' Cell types of 80 PBMC single cells
12+
#'
13+
#' A dataset containing the barcodes and cell types of 80 PBMC single cells.
814
#'
15+
#' @format A tibble containing 80 rows and 2 columns. Cells are a subsample of
16+
#' the Peripheral Blood Mononuclear Cells (PBMC) dataset of 2,700 single
17+
#' cell. Cell types were identified with SingleR.
18+
#' \describe{
19+
#' \item{cell}{cell identifier, barcode}
20+
#' \item{first.labels}{cell type}
21+
#' }
22+
#' @source \url{https://satijalab.org/seurat/v3.1/pbmc3k_tutorial.html}
23+
#' @usage data(cell_type_df)
924
"cell_type_df"
1025

11-
#' Example data set 2
26+
#' Intercellular ligand-receptor interactions for 38 ligands from a single cell RNA-seq cluster.
1227
#'
28+
#' A dataset containing ligand-receptor interactions withibn a sample. There are 38 ligands from a single cell cluster versus
29+
#' 35 receptors in 6 other clusters.
1330
#'
31+
#' @format A tibble containing 100 rows and 9 columns. Cells are a subsample of
32+
#' the PBMC dataset of 2,700 single cells. Cell interactions were identified with SingleCellSignalR.
33+
#' \describe{
34+
#' \item{sample}{sample identifier}
35+
#' \item{ligand}{cluster and ligand identifier}
36+
#' \item{receptor}{cluster and receptor identifier}
37+
#' \item{ligand.name}{ligand name}
38+
#' \item{receptor.name}{receptor name}
39+
#' \item{origin}{cluster containing ligand}
40+
#' \item{destination}{cluster containing receptor}
41+
#' \item{interaction.type}{type of interation, paracrine or autocrine}
42+
#' \item{LRscore}{interaction score}
43+
#' }
44+
#' @source \url{https://satijalab.org/seurat/v3.1/pbmc3k_tutorial.html}
45+
#' @usage data(pbmc_small_nested_interactions)
1446
"pbmc_small_nested_interactions"

0 commit comments

Comments
 (0)