Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 24 additions & 0 deletions Artifacts.toml
Original file line number Diff line number Diff line change
@@ -1,3 +1,27 @@
[mobilenet_v2]
git-tree-sha1 = "1552eb3a913b8ea964482bd68a8fd6e623f57b45"
lazy = true

[[mobilenet_v2.download]]
sha256 = "24d8afb8897cb82825c51e65c7a02f4b2117581294de25ac7fd5222bbc15ae6e"
url = "https://huggingface.co/FluxML/mobilenet/resolve/ccf1ffc5bbb4f2d3b9b7fb7e1285e52de337774e/mobilenet_v2-IMAGENET1K_V2.tar.gz"

[mobilenet_v3_small]
git-tree-sha1 = "9b1f0550051c731056cda7739fcdd115c36c04ad"
lazy = true

[[mobilenet_v3_small.download]]
sha256 = "35b7f6d733bfbd1621349a0ec27391c2714add7ca80006fb4032d8bc66629c97"
url = "https://huggingface.co/FluxML/mobilenet/resolve/ccf1ffc5bbb4f2d3b9b7fb7e1285e52de337774e/mobilenet_v3_small-IMAGENET1K_V1.tar.gz"

[mobilenet_v3_large]
git-tree-sha1 = "49971ff8327bc591885e78ff94140ee472f77329"
lazy = true

[[mobilenet_v3_large.download]]
sha256 = "555fcb5f4f6574d77b603b2fc6672ab437ef60a1a20bc2f951122c91aaaf2f69"
url = "https://huggingface.co/FluxML/mobilenet/resolve/ccf1ffc5bbb4f2d3b9b7fb7e1285e52de337774e/mobilenet_v3_large-IMAGENET1K_V2.tar.gz"

[resnet101]
git-tree-sha1 = "68d563526ab34d3e5aa66b7d96278d2acde212f9"
lazy = true
Expand Down
4 changes: 2 additions & 2 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -37,8 +37,8 @@ To contribute new models, see our [contributing docs](https://fluxml.ai/Metalhea
| [InceptionResNet-v2](https://arxiv.org/abs/1602.07261) | [`InceptionResNetv2`](https://fluxml.ai/Metalhead.jl/dev/api/inception/#Metalhead.InceptionResNetv2) | N |
| [MLPMixer](https://arxiv.org/pdf/2105.01601) | [`MLPMixer`](https://fluxml.ai/Metalhead.jl/dev/api/mixers/#Metalhead.MLPMixer) | N |
| [MobileNetv1](https://arxiv.org/abs/1704.04861) | [`MobileNetv1`](https://fluxml.ai/Metalhead.jl/dev/api/mobilenet/#Metalhead.MobileNetv1) | N |
| [MobileNetv2](https://arxiv.org/abs/1801.04381) | [`MobileNetv2`](https://fluxml.ai/Metalhead.jl/dev/api/mobilenet/#Metalhead.MobileNetv2) | N |
| [MobileNetv3](https://arxiv.org/abs/1905.02244) | [`MobileNetv3`](https://fluxml.ai/Metalhead.jl/dev/api/mobilenet/#Metalhead.MobileNetv3) | N |
| [MobileNetv2](https://arxiv.org/abs/1801.04381) | [`MobileNetv2`](https://fluxml.ai/Metalhead.jl/dev/api/mobilenet/#Metalhead.MobileNetv2) | Y |
| [MobileNetv3](https://arxiv.org/abs/1905.02244) | [`MobileNetv3`](https://fluxml.ai/Metalhead.jl/dev/api/mobilenet/#Metalhead.MobileNetv3) | Y |
| [MNASNet](https://arxiv.org/abs/1807.11626) | [`MNASNet`](https://fluxml.ai/Metalhead.jl/dev/api/efficientnet/#Metalhead.MNASNet) | N |
| [ResMLP](https://arxiv.org/abs/2105.03404) | [`ResMLP`](https://fluxml.ai/Metalhead.jl/dev/api/mixers/#Metalhead.ResMLP) | N |
| [ResNet](https://arxiv.org/abs/1512.03385) | [`ResNet`](https://fluxml.ai/Metalhead.jl/dev/api/resnet/#Metalhead.ResNet) | Y |
Expand Down
2 changes: 2 additions & 0 deletions scripts/Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -3,10 +3,12 @@ ArtifactUtils = "8b73e784-e7d8-4ea5-973d-377fed4e3bce"
BSON = "fbb218c0-5317-5bc6-957e-2ee96dd4b1f0"
DataStructures = "864edb3b-99cc-5e75-8d2d-829cb0a9cfe8"
Flux = "587475ba-b771-5e3f-ad9e-33799f191a9c"
Functors = "d9f16b24-f501-4c13-a1f2-28368ffc5196"
HuggingFaceApi = "3cc741c3-0c9d-4fbe-84fa-cdec264173de"
Images = "916415d5-f1e6-5110-898d-aaa5f9f070e0"
JLD2 = "033835bb-8acc-5ee8-8aae-3f567f8a3819"
MLUtils = "f1d291b0-491e-4a28-83b9-f70985020b54"
Metalhead = "dbeba491-748d-5e0e-a39e-b530a07fa0cc"
PythonCall = "6099a3de-0909-46bc-b1f4-468b9a2dfc0d"
Statistics = "10745b16-79ce-11e8-11f9-7d13ad32a3b2"
TestImages = "5e47fb64-e119-507b-a336-dd2b206d9990"
3 changes: 3 additions & 0 deletions scripts/port_torchvision.jl
Original file line number Diff line number Diff line change
Expand Up @@ -33,6 +33,9 @@ model_list = [
# ("vit_b_32", "IMAGENET1K_V1", () -> ViT(:base, patch_size=(32,32)), weights -> tvmodels.vit_b_32(; weights)),
# ("vit_l_16", "IMAGENET1K_V1", () -> ViT(:large), weights -> tvmodels.vit_l_16(; weights)),
# ("vit_l_32", "IMAGENET1K_V1", () -> ViT(:large, patch_size=(32,32)), weights -> tvmodels.vit_l_32(; weights)),
# ("mobilenet_v2", "IMAGENET1K_V2", () -> MobileNetv2(), weights -> tvmodels.mobilenet_v2(; weights)),
# ("mobilenet_v3_small", "IMAGENET1K_V1", () -> MobileNetv3(:small), weights -> tvmodels.mobilenet_v3_small(; weights)),
# ("mobilenet_v3_large", "IMAGENET1K_V2", () -> MobileNetv3(:large), weights -> tvmodels.mobilenet_v3_large(; weights)),
## NOT WORKING:
("densenet121", "IMAGENET1K_V1", () -> DenseNet(121), weights -> tvmodels.densenet121(; weights)),
# ("squeezenet1_0", "IMAGENET1K_V1", () -> SqueezeNet(), weights -> tvmodels.squeezenet1_0(; weights)),
Expand Down
5 changes: 2 additions & 3 deletions scripts/pytorch2flux.jl
Original file line number Diff line number Diff line change
Expand Up @@ -10,19 +10,18 @@ using BSON
using PythonCall
using Images
using Test
using TestImages

include("utils.jl")

const torch = pyimport("torch")
const torchvision = pyimport("torchvision")

# test image
const GUITAR_PATH = download("https://cdn.pixabay.com/photo/2015/05/07/11/02/guitar-756326_960_720.jpg")
const IMAGENET_LABELS = readlines(download("https://raw.githubusercontent.com/pytorch/hub/master/imagenet_classes.txt"))

function compare_pytorch(jlmodel, pymodel; rtol = 1e-4)
sz = (224, 224)
img = Images.load(GUITAR_PATH);
img = testimage("monarch_color_256")
img = imresize(img, sz);
# CHW -> WHC
data = permutedims(convert(Array{Float32}, channelview(img)), (3,2,1))
Expand Down
7 changes: 3 additions & 4 deletions src/convnets/mobilenets/mobilenetv2.jl
Original file line number Diff line number Diff line change
Expand Up @@ -57,10 +57,6 @@ Create a MobileNetv2 model with the specified configuration.
- `inchannels`: The number of input channels.
- `nclasses`: The number of output classes

!!! warning

`MobileNetv2` does not currently support pretrained weights.

See also [`Metalhead.mobilenetv2`](@ref).
"""
struct MobileNetv2
Expand All @@ -73,6 +69,9 @@ function MobileNetv2(width_mult::Real = 1; pretrain::Bool = false,
layers = mobilenetv2(width_mult; inchannels, nclasses)
model = MobileNetv2(layers)
if pretrain
if width_mult != 1.0
throw(ArgumentError("No pre-trained weights available for width_mult=$width_mult."))
end
loadpretrain!(model, "mobilenet_v2")
end
return model
Expand Down
18 changes: 9 additions & 9 deletions src/convnets/mobilenets/mobilenetv3.jl
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,7 @@ const MOBILENETV3_CONFIGS = Dict(:small => (1024,
(mbconv, 5, 40, 4, 2, 1, 4, hardswish),
(mbconv, 5, 40, 6, 1, 2, 4, hardswish),
(mbconv, 5, 48, 3, 1, 2, 4, hardswish),
(mbconv, 5, 96, 6, 1, 3, 4, hardswish),
(mbconv, 5, 96, 6, 2, 3, 4, hardswish),
]),
:large => (1280,
[
Expand All @@ -31,7 +31,7 @@ const MOBILENETV3_CONFIGS = Dict(:small => (1024,
(mbconv, 3, 80, 2.3, 1, 2, nothing,
hardswish),
(mbconv, 3, 112, 6, 1, 2, 4, hardswish),
(mbconv, 5, 160, 6, 1, 3, 4, hardswish),
(mbconv, 5, 160, 6, 2, 3, 4, hardswish),
]))

"""
Expand All @@ -54,9 +54,10 @@ function mobilenetv3(config::Symbol; width_mult::Real = 1, dropout_prob = 0.2,
inchannels::Integer = 3, nclasses::Integer = 1000)
_checkconfig(config, [:small, :large])
max_width, block_configs = MOBILENETV3_CONFIGS[config]
norm_layer = (args...; kwargs...) -> BatchNorm(args...; momentum=1.0f-2, eps=1.0f-3, kwargs...)
return build_invresmodel(width_mult, block_configs; inplanes = 16,
headplanes = max_width, activation = relu,
se_from_explanes = true, se_round_fn = _round_channels,
headplanes = max_width, activation = hardswish, norm_layer,
se_activation = relu, se_from_explanes = true, se_round_fn = _round_channels,
expanded_classifier = true, dropout_prob, inchannels, nclasses)
end

Expand All @@ -77,10 +78,6 @@ Set `pretrain = true` to load the model with pre-trained weights for ImageNet.
- `inchannels`: number of input channels
- `nclasses`: the number of output classes

!!! warning

`MobileNetv3` does not currently support pretrained weights.

See also [`Metalhead.mobilenetv3`](@ref).
"""
struct MobileNetv3
Expand All @@ -93,7 +90,10 @@ function MobileNetv3(config::Symbol; width_mult::Real = 1, pretrain::Bool = fals
layers = mobilenetv3(config; width_mult, inchannels, nclasses)
model = MobileNetv3(layers)
if pretrain
loadpretrain!(model, "mobilenet_v3")
if width_mult != 1.0
throw(ArgumentError("No pre-trained weights available for width_mult=$width_mult."))
end
loadpretrain!(model, string("mobilenet_v3_", config))
end
return model
end
Expand Down
5 changes: 3 additions & 2 deletions src/layers/mbconv.jl
Original file line number Diff line number Diff line change
Expand Up @@ -81,6 +81,7 @@ First introduced in the MobileNetv2 paper.
function mbconv(kernel_size::Dims{2}, inplanes::Integer, explanes::Integer,
outplanes::Integer, activation = relu; stride::Integer,
reduction::Union{Nothing, Real} = nothing,
se_activation = activation,
se_round_fn = x -> round(Int, x), norm_layer = BatchNorm)
@assert stride in [1, 2] "`stride` has to be 1 or 2 for `mbconv`"
layers = []
Expand All @@ -97,10 +98,10 @@ function mbconv(kernel_size::Dims{2}, inplanes::Integer, explanes::Integer,
if !isnothing(reduction)
push!(layers,
squeeze_excite(explanes; round_fn = se_round_fn, reduction,
activation, gate_activation = hardσ))
activation=se_activation, gate_activation = hardσ))
end
# project
append!(layers, conv_norm((1, 1), explanes, outplanes, identity))
append!(layers, conv_norm((1, 1), explanes, outplanes, identity; norm_layer))
return Chain(layers...)
end

Expand Down
8 changes: 4 additions & 4 deletions test/convnet_tests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -307,9 +307,9 @@ end
m = MobileNetv2(width_mult) |> gpu
@test size(m(x_224)) == (1000, 1)
if (MobileNetv2, width_mult) in PRETRAINED_MODELS
@test acctest(MobileNetv2(; pretrain = true))
@test acctest(MobileNetv2(width_mult; pretrain = true))
else
@test_throws ArgumentError MobileNetv2(pretrain = true)
@test_throws ArgumentError MobileNetv2(width_mult; pretrain = true)
end
@test gradtest(m, x_224)
end
Expand All @@ -321,9 +321,9 @@ end
m = MobileNetv3(config; width_mult) |> gpu
@test size(m(x_224)) == (1000, 1)
if (MobileNetv3, config, width_mult) in PRETRAINED_MODELS
@test acctest(MobileNetv3(config; pretrain = true))
@test acctest(MobileNetv3(config; width_mult, pretrain = true))
else
@test_throws ArgumentError MobileNetv3(config; pretrain = true)
@test_throws ArgumentError MobileNetv3(config; width_mult, pretrain = true)
end
@test gradtest(m, x_224)
_gc()
Expand Down
5 changes: 4 additions & 1 deletion test/model_tests.jl
Original file line number Diff line number Diff line change
Expand Up @@ -24,6 +24,9 @@ const PRETRAINED_MODELS = [
# (DenseNet, 161),
# (DenseNet, 169),
# (DenseNet, 201),
(MobileNetv2, 1.0),
(MobileNetv3, :small, 1.0),
(MobileNetv3, :large, 1.0),
(ResNet, 18),
(ResNet, 34),
(ResNet, 50),
Expand Down Expand Up @@ -85,4 +88,4 @@ end

const x_224 = rand(Float32, 224, 224, 3, 1) |> gpu
const x_256 = rand(Float32, 256, 256, 3, 1) |> gpu
end
end
Loading