Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension


Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions .github/workflows/CI.yml
Original file line number Diff line number Diff line change
Expand Up @@ -39,6 +39,7 @@ jobs:
- OptimizationPyCMA
- OptimizationQuadDIRECT
- OptimizationSciPy
- OptimizationSophia
- OptimizationSpeedMapping
- OptimizationPolyalgorithms
- OptimizationNLPModels
Expand Down
1 change: 0 additions & 1 deletion Project.toml
Original file line number Diff line number Diff line change
Expand Up @@ -14,7 +14,6 @@ LoggingExtras = "e6f89c97-d47a-5376-807f-9c37f3926c36"
OptimizationBase = "bca83a33-5cc9-4baa-983d-23429ab6bcbb"
Printf = "de0858da-6303-5e67-8744-51eddeeeb8d7"
ProgressLogging = "33c8b6b6-d38a-422a-b730-caa89a2f386c"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"
Reexport = "189a3867-3050-52da-a836-e630ba90ab69"
SciMLBase = "0bca4576-84f4-4d90-8ffe-ffa030f20462"
SparseArrays = "2f01184e-e22b-5df5-ae63-d93ebab69eaf"
Expand Down
33 changes: 33 additions & 0 deletions lib/OptimizationSophia/Project.toml
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
name = "OptimizationSophia"
uuid = "892fee11-dca1-40d6-b698-84ba0d87399a"
authors = ["paramthakkar123 <[email protected]>"]
version = "0.1.0"

[deps]
Optimization = "7f7a1694-90dd-40f0-9382-eb1efda571ba"
OptimizationBase = "bca83a33-5cc9-4baa-983d-23429ab6bcbb"
Random = "9a3f8284-a2c9-5f02-9a11-845980a1fd5c"

[extras]
ComponentArrays = "b0b7db55-cfe3-40fc-9ded-d10e2dbeff66"
Lux = "b2108857-7c20-44ae-9111-449ecde12c47"
MLUtils = "f1d291b0-491e-4a28-83b9-f70985020b54"
OrdinaryDiffEqTsit5 = "b1df2697-797e-41e3-8120-5422d3b24e4a"
SciMLSensitivity = "1ed8b502-d754-442c-8d5d-10ac956f44a1"
Test = "8dfed614-e22c-5e08-85e1-65c5234f0b40"
Zygote = "e88e6eb3-aa80-5325-afca-941959d7151f"

[compat]
ComponentArrays = "0.15.29"
Lux = "1.16.0"
MLUtils = "0.4.8"
Optimization = "4.5.0"
OptimizationBase = "2.10.0"
OrdinaryDiffEqTsit5 = "1.2.0"
Random = "1.10.0"
SciMLSensitivity = "7.88.0"
Test = "1.10.0"
Zygote = "0.7.10"

[targets]
test = ["Test", "ComponentArrays", "Lux", "MLUtils", "OrdinaryDiffEqTsit5", "SciMLSensitivity", "Zygote"]
Original file line number Diff line number Diff line change
@@ -1,3 +1,10 @@
module OptimizationSophia

using OptimizationBase.SciMLBase
using OptimizationBase: OptimizationCache
using Optimization
using Random

"""
Sophia(; η = 1e-3, βs = (0.9, 0.999), ϵ = 1e-8, λ = 1e-1, k = 10, ρ = 0.04)

Expand Down Expand Up @@ -171,3 +178,5 @@ function SciMLBase.__solve(cache::OptimizationCache{
θ,
x, retcode = ReturnCode.Success)
end

end
78 changes: 78 additions & 0 deletions lib/OptimizationSophia/test/runtests.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,78 @@
using OptimizationBase, Optimization
using OptimizationBase.SciMLBase: solve, OptimizationFunction, OptimizationProblem
using OptimizationSophia
using Lux, MLUtils, Random, ComponentArrays
using SciMLSensitivity
using Test
using Zygote
using OrdinaryDiffEqTsit5

function dudt_(u, p, t)
ann(u, p, st)[1] .* u
end

function newtons_cooling(du, u, p, t)
temp = u[1]
k, temp_m = p
du[1] = dT = -k * (temp - temp_m)
end

function true_sol(du, u, p, t)
true_p = [log(2) / 8.0, 100.0]
newtons_cooling(du, u, true_p, t)
end

function callback(state, l) #callback function to observe training
display(l)
return l < 1e-2
end

function predict_adjoint(fullp, time_batch)
Array(solve(prob, Tsit5(), p = fullp, saveat = time_batch))
end

function loss_adjoint(fullp, p)
(batch, time_batch) = p
pred = predict_adjoint(fullp, time_batch)
sum(abs2, batch .- pred)
end

u0 = Float32[200.0]
datasize = 30
tspan = (0.0f0, 1.5f0)
rng = Random.default_rng()

ann = Lux.Chain(Lux.Dense(1, 8, tanh), Lux.Dense(8, 1, tanh))
pp, st = Lux.setup(rng, ann)
pp = ComponentArray(pp)

prob = ODEProblem{false}(dudt_, u0, tspan, pp)

t = range(tspan[1], tspan[2], length = datasize)
true_prob = ODEProblem(true_sol, u0, tspan)
ode_data = Array(solve(true_prob, Tsit5(), saveat = t))

k = 10
train_loader = MLUtils.DataLoader((ode_data, t), batchsize = k)

l1 = loss_adjoint(pp, (train_loader.data[1], train_loader.data[2]))[1]

optfun = OptimizationFunction(loss_adjoint,
OptimizationBase.AutoZygote())
optprob = OptimizationProblem(optfun, pp, train_loader)

res1 = solve(optprob,
OptimizationSophia.Sophia(), callback = callback,
maxiters = 2000)
@test 10res1.objective < l1

# Test Sophia with ComponentArrays + Enzyme (shadow generation fix)
using ComponentArrays
x0_comp = ComponentVector(a = 0.0, b = 0.0)
rosenbrock_comp(x, p = nothing) = (1 - x.a)^2 + 100 * (x.b - x.a^2)^2

optf_sophia = OptimizationFunction(rosenbrock_comp, AutoEnzyme())
prob_sophia = OptimizationProblem(optf_sophia, x0_comp)
res_sophia = solve(prob_sophia, OptimizationSophia.Sophia(η=0.01, k=5), maxiters = 50)
@test res_sophia.objective < rosenbrock_comp(x0_comp) # Test optimization progress
@test res_sophia.retcode == Optimization.SciMLBase.ReturnCode.Success
3 changes: 1 addition & 2 deletions src/Optimization.jl
Original file line number Diff line number Diff line change
Expand Up @@ -12,7 +12,7 @@ if !isdefined(Base, :get_extension)
end

using Logging, ProgressLogging, ConsoleProgressMonitor, TerminalLoggers, LoggingExtras
using ArrayInterface, Base.Iterators, SparseArrays, LinearAlgebra, Random
using ArrayInterface, Base.Iterators, SparseArrays, LinearAlgebra

import OptimizationBase: instantiate_function, OptimizationCache, ReInitCache
import SciMLBase: OptimizationProblem,
Expand All @@ -22,7 +22,6 @@ export ObjSense, MaxSense, MinSense

include("utils.jl")
include("state.jl")
include("sophia.jl")

export solve

Expand Down
5 changes: 0 additions & 5 deletions test/minibatch.jl
Original file line number Diff line number Diff line change
Expand Up @@ -58,11 +58,6 @@ optfun = OptimizationFunction(loss_adjoint,
Optimization.AutoZygote())
optprob = OptimizationProblem(optfun, pp, train_loader)

res1 = Optimization.solve(optprob,
Optimization.Sophia(), callback = callback,
maxiters = 2000)
@test 10res1.objective < l1

optfun = OptimizationFunction(loss_adjoint,
Optimization.AutoForwardDiff())
optprob = OptimizationProblem(optfun, pp, train_loader)
Expand Down
11 changes: 0 additions & 11 deletions test/native.jl
Original file line number Diff line number Diff line change
Expand Up @@ -26,14 +26,3 @@ optf1 = OptimizationFunction(loss, AutoSparseForwardDiff())
prob1 = OptimizationProblem(optf1, rand(5), data)
sol1 = solve(prob1, OptimizationOptimisers.Adam(), maxiters = 1000, callback = callback)
@test sol1.objective < l0

# Test Sophia with ComponentArrays + Enzyme (shadow generation fix)
using ComponentArrays
x0_comp = ComponentVector(a = 0.0, b = 0.0)
rosenbrock_comp(x, p = nothing) = (1 - x.a)^2 + 100 * (x.b - x.a^2)^2

optf_sophia = OptimizationFunction(rosenbrock_comp, AutoEnzyme())
prob_sophia = OptimizationProblem(optf_sophia, x0_comp)
res_sophia = solve(prob_sophia, Optimization.Sophia(η=0.01, k=5), maxiters = 50)
@test res_sophia.objective < rosenbrock_comp(x0_comp) # Test optimization progress
@test res_sophia.retcode == Optimization.SciMLBase.ReturnCode.Success
Loading