For our assignment, we use only our own data, not any samples proposed by the authors
- Put
file_cutoff.pkl
andmetadata_with_embeddings.pkl
inside./artifacts
- Run
transform_artifacts.ipynb
- Rename the resulting CSVs to
rekomDataset.inter
andrekomDataset.item
- Put these files to the directory as shown below
$ tree
.
├── rekomDataset
│ ├── rekomDataset.inter
│ └── rekomDataset.item
- Run your training with:
$ python run_seq.py --dataset='rekomDataset' --train_batch_size=256 --lmd=0.1 --lmd_sem=0.1 --model='CL4SRec' --contrast='us_x' --sim='dot' --tau=1
Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation.
Download datasets from RecSysDatasets or their Google Drive. And put the files in ./dataset/
like the following.
$ tree
.
├── Amazon_Beauty
│ ├── Amazon_Beauty.inter
│ └── Amazon_Beauty.item
├── Amazon_Clothing_Shoes_and_Jewelry
│ ├── Amazon_Clothing_Shoes_and_Jewelry.inter
│ └── Amazon_Clothing_Shoes_and_Jewelry.item
├── Amazon_Sports_and_Outdoors
│ ├── Amazon_Sports_and_Outdoors.inter
│ └── Amazon_Sports_and_Outdoors.item
├── ml-1m
│ ├── ml-1m.inter
│ ├── ml-1m.item
│ ├── ml-1m.user
│ └── README.md
└── yelp
├── README.md
├── yelp.inter
├── yelp.item
└── yelp.user
Run duorec.sh
.
If you find this repo useful, please cite
@article{DuoRec,
author = {Ruihong Qiu and
Zi Huang and
Hongzhi Yin and
Zijian Wang},
title = {Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation},
journal = {CoRR},
volume = {abs/2110.05730},
year = {2021},
}
We have also implemented CL4SRec
, Contrastive Learning for Sequential Recommendation. Change the --model="DuoRec"
into --model="CL4SRec"
in the duorec.sh
file to run CL4SRec
.
Our another sequential recommender model MMInfoRec
, Memory Augmented Multi-Instance Contrastive Predictive Coding for Sequential Recommendation at ICDM 2021 is also available on GitHub, MMInfoRec.
This repo is based on RecBole.