Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
143 changes: 41 additions & 102 deletions machine_learning/linear_regression.py
Original file line number Diff line number Diff line change
Expand Up @@ -21,127 +21,66 @@


def collect_dataset():
"""Collect dataset of CSGO
The dataset contains ADR vs Rating of a Player
:return : dataset obtained from the link, as matrix
"""
"""Collect dataset of CSGO (ADR vs Rating)."""
response = httpx.get(
"https://raw.githubusercontent.com/yashLadha/The_Math_of_Intelligence/"
"master/Week1/ADRvsRating.csv",
"https://raw.githubusercontent.com/yashLadha/The_Math_of_Intelligence/master/Week1/ADRvsRating.csv",
timeout=10,
)
lines = response.text.splitlines()
data = []
for item in lines:
item = item.split(",")
data.append(item)
data.pop(0) # This is for removing the labels from the list
dataset = np.matrix(data)
return dataset


def run_steep_gradient_descent(data_x, data_y, len_data, alpha, theta):
"""Run steep gradient descent and updates the Feature vector accordingly_
:param data_x : contains the dataset
:param data_y : contains the output associated with each data-entry
:param len_data : length of the data_
:param alpha : Learning rate of the model
:param theta : Feature vector (weight's for our model)
;param return : Updated Feature's, using
curr_features - alpha_ * gradient(w.r.t. feature)
>>> import numpy as np
>>> data_x = np.array([[1, 2], [3, 4]])
>>> data_y = np.array([5, 6])
>>> len_data = len(data_x)
>>> alpha = 0.01
>>> theta = np.array([0.1, 0.2])
>>> run_steep_gradient_descent(data_x, data_y, len_data, alpha, theta)
array([0.196, 0.343])
"""
n = len_data

prod = np.dot(theta, data_x.transpose())
prod -= data_y.transpose()
sum_grad = np.dot(prod, data_x)
theta = theta - (alpha / n) * sum_grad
lines = response.text.strip().splitlines()
data = [line.split(",") for line in lines[1:]] # skip header
return np.array(data, dtype=float)


def run_steep_gradient_descent(data_x, data_y, alpha, theta):
"""Perform one step of gradient descent."""
n = data_x.shape[0]
predictions = data_x @ theta.T
errors = predictions.flatten() - data_y
gradient = (1 / n) * (errors @ data_x)
theta = theta - alpha * gradient
return theta


def sum_of_square_error(data_x, data_y, len_data, theta):
"""Return sum of square error for error calculation
:param data_x : contains our dataset
:param data_y : contains the output (result vector)
:param len_data : len of the dataset
:param theta : contains the feature vector
:return : sum of square error computed from given feature's

Example:
>>> vc_x = np.array([[1.1], [2.1], [3.1]])
>>> vc_y = np.array([1.2, 2.2, 3.2])
>>> round(sum_of_square_error(vc_x, vc_y, 3, np.array([1])),3)
np.float64(0.005)
"""
prod = np.dot(theta, data_x.transpose())
prod -= data_y.transpose()
sum_elem = np.sum(np.square(prod))
error = sum_elem / (2 * len_data)
return error


def run_linear_regression(data_x, data_y):
"""Implement Linear regression over the dataset
:param data_x : contains our dataset
:param data_y : contains the output (result vector)
:return : feature for line of best fit (Feature vector)
"""
iterations = 100000
alpha = 0.0001550

no_features = data_x.shape[1]
len_data = data_x.shape[0] - 1

theta = np.zeros((1, no_features))
def sum_of_square_error(data_x, data_y, theta):
"""Compute mean squared error."""
n = data_x.shape[0]
predictions = data_x @ theta.T
errors = predictions.flatten() - data_y
return np.sum(errors**2) / (2 * n)

for i in range(iterations):
theta = run_steep_gradient_descent(data_x, data_y, len_data, alpha, theta)
error = sum_of_square_error(data_x, data_y, len_data, theta)
print(f"At Iteration {i + 1} - Error is {error:.5f}")

def run_linear_regression(data_x, data_y, iterations=100000, alpha=0.000155):
"""Run gradient descent to learn parameters."""
theta = np.zeros((1, data_x.shape[1]))
for i in range(iterations):
theta = run_steep_gradient_descent(data_x, data_y, alpha, theta)
error = sum_of_square_error(data_x, data_y, theta)
print(f"Iteration {i + 1}: Error = {error:.5f}")
return theta


def mean_absolute_error(predicted_y, original_y):
"""Return sum of square error for error calculation
:param predicted_y : contains the output of prediction (result vector)
:param original_y : contains values of expected outcome
:return : mean absolute error computed from given feature's

>>> predicted_y = [3, -0.5, 2, 7]
>>> original_y = [2.5, 0.0, 2, 8]
>>> mean_absolute_error(predicted_y, original_y)
0.5
"""
total = sum(abs(y - predicted_y[i]) for i, y in enumerate(original_y))
return total / len(original_y)
"""Compute MAE (fully vectorized)."""
predicted_y = np.array(predicted_y)
original_y = np.array(original_y)
return np.mean(np.abs(predicted_y - original_y))


def main():
"""Driver function"""
data = collect_dataset()

len_data = data.shape[0]
data_x = np.c_[np.ones(len_data), data[:, :-1]].astype(float)
data_y = data[:, -1].astype(float)
data_x = np.c_[np.ones(data.shape[0]), data[:, 0]] # Add bias term
data_y = data[:, 1] # Rating

theta = run_linear_regression(data_x, data_y)
len_result = theta.shape[1]
print("Resultant Feature vector : ")
for i in range(len_result):
print(f"{theta[0, i]:.5f}")

print("Learned Parameters (theta):")
for val in theta[0]:
print(f"{val:.5f}")

predictions = data_x @ theta.T
mae = mean_absolute_error(predictions.flatten(), data_y)
print(f"Mean Absolute Error: {mae:.5f}")

if __name__ == "__main__":
import doctest

doctest.testmod()
if __name__ == "__main__":
main()