Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
2 changes: 1 addition & 1 deletion config/tests.sh
Original file line number Diff line number Diff line change
Expand Up @@ -24,7 +24,7 @@ run_for_framework() {
python -m pytest ${code_coverage_smdebug:+--cov=./ --cov-append} tests/rules
elif [ "$1" = "pytorch" ] ; then
python -m pytest ${code_coverage_smdebug:+--cov=./ --cov-append} tests/zero_code_change/test_pytorch_integration.py
python -m pytest ${code_coverage_smdebug:+--cov=./ --cov-append} tests/zero_code_change/test_pytorch_multiprocessing.py
python -m pytest ${code_coverage_smdebug:+--cov=./ --cov-append} -s tests/zero_code_change/test_pytorch_multiprocessing.py
python -m pytest ${code_coverage_smdebug:+--cov=./ --cov-append} tests/zero_code_change/test_training_with_no_grad_updates.py
elif [ "$1" = "tensorflow" ] ; then
python -m pytest ${code_coverage_smdebug:+--cov=./ --cov-append} tests/zero_code_change/test_tensorflow_integration.py
Expand Down
29 changes: 15 additions & 14 deletions tests/zero_code_change/test_pytorch_multiprocessing.py
Original file line number Diff line number Diff line change
Expand Up @@ -39,27 +39,17 @@ def forward(self, x):
return F.log_softmax(x, dim=1)


def train(rank, model, device, dataloader_kwargs):
def train(rank, model, device, data_set, dataloader_kwargs):
# Training Settings

batch_size = 64
epochs = 1
lr = 0.01
momentum = 0.5

torch.manual_seed(1 + rank)
train_loader = torch.utils.data.DataLoader(
datasets.MNIST(
data_dir,
train=True,
download=True,
transform=transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
),
),
batch_size=batch_size,
shuffle=True,
num_workers=1,
**dataloader_kwargs
data_set, batch_size=batch_size, shuffle=True, num_workers=1, **dataloader_kwargs
)

optimizer = optim.SGD(model.parameters(), lr=lr, momentum=momentum)
Expand All @@ -85,6 +75,17 @@ def test_no_failure_with_torch_mp(out_dir):
path = str(path)
os.environ["SMDEBUG_CONFIG_FILE_PATH"] = path
device = "cpu"

# clear data_dir before saving to it
shutil.rmtree(data_dir, ignore_errors=True)
data_set = datasets.MNIST(
data_dir,
train=True,
download=True,
transform=transforms.Compose(
[transforms.ToTensor(), transforms.Normalize((0.1307,), (0.3081,))]
),
)
dataloader_kwargs = {}
cpu_count = 2 if mp.cpu_count() > 2 else mp.cpu_count()

Expand All @@ -95,7 +96,7 @@ def test_no_failure_with_torch_mp(out_dir):

processes = []
for rank in range(cpu_count):
p = mp.Process(target=train, args=(rank, model, device, dataloader_kwargs))
p = mp.Process(target=train, args=(rank, model, device, data_set, dataloader_kwargs))
# We first train the model across `num_processes` processes
p.start()
processes.append(p)
Expand Down