Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 15 additions & 12 deletions tensorflow/rnn.py
Original file line number Diff line number Diff line change
Expand Up @@ -3,8 +3,9 @@
import optparse
import numpy as np
import tensorflow as tf
from tensorflow.python.ops import rnn

# from tensorflow.python.ops import rnn
from tensorflow.contrib import rnn
from six.moves import xrange

def get_feed_dict(x_data, y_data=None):
feed_dict = {}
Expand Down Expand Up @@ -40,7 +41,7 @@ def get_feed_dict(x_data, y_data=None):
xinput = np.random.rand(seq_length, batch_size, hidden_size).astype(np.float32)
ytarget = np.random.rand(batch_size, hidden_size).astype(np.float32)

with tf.device('/gpu:0'):
with tf.device('/cpu:0'):

x = [tf.placeholder(tf.float32, [batch_size, hidden_size], name="x") for i in range(seq_length)]
y = tf.placeholder(tf.float32, [batch_size, hidden_size], name="y")
Expand All @@ -54,30 +55,32 @@ def get_feed_dict(x_data, y_data=None):
else:
raise Exception('Unknown network! '+network_type)

print "Compiling..."
print("Compiling...")
start = time.time()
output, _cell_state = rnn.rnn(cell, x, dtype=tf.float32)
# output, _cell_state = rnn.rnn(cell, x, dtype=tf.float32)
output, _cell_state = rnn.static_rnn(cell, x, dtype=tf.float32)
cost = tf.reduce_sum((output[-1] - y) ** 2)

optim = tf.train.GradientDescentOptimizer(0.01)
train_op = optim.minimize(cost)

session = tf.Session()
session.run(tf.initialize_all_variables())
# session.run(tf.initialize_all_variables())
session.run(tf.global_variables_initializer())
session.run(train_op, feed_dict=get_feed_dict(xinput, ytarget))
print "Setup : compile + forward/backward x 1"
print "--- %s seconds" % (time.time() - start)
print("Setup : compile + forward/backward x 1")
print("--- %s seconds" % (time.time() - start))

start = time.time()
for i in xrange(0, n_batch):
session.run(output[-1], feed_dict=get_feed_dict(xinput))
end = time.time()
print "Forward:"
print "--- %i samples in %s seconds (%f samples/s, %.7f s/sample) ---" % (n_samples, end - start, n_samples / (end - start), (end - start) / n_samples)
print("Forward:")
print("--- %i samples in %s seconds (%f samples/s, %.7f s/sample) ---" % (n_samples, end - start, n_samples / (end - start), (end - start) / n_samples))

start = time.time()
for i in xrange(0, n_batch):
session.run(train_op, feed_dict=get_feed_dict(xinput, ytarget))
end = time.time()
print "Forward + Backward:"
print "--- %i samples in %s seconds (%f samples/s, %.7f s/sample) ---" % (n_samples, end - start, n_samples / (end - start), (end - start) / n_samples)
print("Forward + Backward:")
print("--- %i samples in %s seconds (%f samples/s, %.7f s/sample) ---" % (n_samples, end - start, n_samples / (end - start), (end - start) / n_samples))