Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 5 additions & 1 deletion src/transformers/models/bart/modeling_bart.py
Original file line number Diff line number Diff line change
Expand Up @@ -1749,6 +1749,7 @@ def forward(
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
) -> Union[tuple, CausalLMOutputWithCrossAttentions]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Expand Down Expand Up @@ -1794,7 +1795,10 @@ def forward(
cache_position=cache_position,
)

logits = self.lm_head(outputs[0])
hidden_states = outputs[0]
# Only compute necessary logits
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])

loss = None
if labels is not None:
Expand Down
17 changes: 10 additions & 7 deletions src/transformers/models/bert/modeling_bert.py
Original file line number Diff line number Diff line change
Expand Up @@ -1069,6 +1069,7 @@ def forward(
past_key_values: Optional[Union[list[torch.FloatTensor], Cache]] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.Tensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[TransformersKwargs],
) -> Union[tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
r"""
Expand All @@ -1080,7 +1081,7 @@ def forward(
if labels is not None:
use_cache = False

outputs = self.bert(
outputs: BaseModelOutputWithPoolingAndCrossAttentions = self.bert(
input_ids,
attention_mask=attention_mask,
token_type_ids=token_type_ids,
Expand All @@ -1095,16 +1096,18 @@ def forward(
**kwargs,
)

sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.cls(hidden_states[:, slice_indices, :])

lm_loss = None
loss = None
if labels is not None:
lm_loss = self.loss_function(prediction_scores, labels, self.config.vocab_size, **kwargs)
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)

return CausalLMOutputWithCrossAttentions(
loss=lm_loss,
logits=prediction_scores,
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
Expand Down
22 changes: 10 additions & 12 deletions src/transformers/models/bert_generation/modeling_bert_generation.py
Original file line number Diff line number Diff line change
Expand Up @@ -851,6 +851,7 @@ def forward(
past_key_values: Optional[tuple[tuple[torch.FloatTensor]]] = None,
use_cache: Optional[bool] = None,
cache_position: Optional[torch.Tensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[TransformersKwargs],
) -> Union[tuple, CausalLMOutputWithCrossAttentions]:
r"""
Expand Down Expand Up @@ -880,7 +881,7 @@ def forward(
if labels is not None:
use_cache = False

outputs = self.bert(
outputs: BaseModelOutputWithPastAndCrossAttentions = self.bert(
input_ids,
attention_mask=attention_mask,
position_ids=position_ids,
Expand All @@ -894,21 +895,18 @@ def forward(
**kwargs,
)

sequence_output = outputs[0]
prediction_scores = self.lm_head(sequence_output)
hidden_states = outputs.last_hidden_state
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])

lm_loss = None
loss = None
if labels is not None:
lm_loss = self.loss_function(
prediction_scores,
labels,
vocab_size=self.config.vocab_size,
**kwargs,
)
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)

return CausalLMOutputWithCrossAttentions(
loss=lm_loss,
logits=prediction_scores,
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
Expand Down
24 changes: 11 additions & 13 deletions src/transformers/models/big_bird/modeling_big_bird.py
Original file line number Diff line number Diff line change
Expand Up @@ -2197,6 +2197,7 @@ def forward(
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.Tensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs,
) -> Union[CausalLMOutputWithCrossAttentions, tuple[torch.FloatTensor]]:
r"""
Expand Down Expand Up @@ -2224,25 +2225,22 @@ def forward(
**kwargs,
)

sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
hidden_states = outputs[0]
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.cls(hidden_states[:, slice_indices, :])

lm_loss = None
loss = None
if labels is not None:
lm_loss = self.loss_function(
prediction_scores,
labels,
vocab_size=self.config.vocab_size,
**kwargs,
)
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)

if not return_dict:
output = (prediction_scores,) + outputs[2:]
return ((lm_loss,) + output) if lm_loss is not None else output
output = (logits,) + outputs[2:]
return ((loss,) + output) if loss is not None else output

return CausalLMOutputWithCrossAttentions(
loss=lm_loss,
logits=prediction_scores,
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -2840,6 +2840,7 @@ def forward(
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
) -> Union[tuple, CausalLMOutputWithCrossAttentions]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Expand Down Expand Up @@ -2884,7 +2885,10 @@ def forward(
cache_position=cache_position,
)

logits = self.lm_head(outputs[0])
hidden_states = outputs[0]
# Only compute necessary logits
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])

loss = None
if labels is not None:
Expand Down
24 changes: 11 additions & 13 deletions src/transformers/models/biogpt/modeling_biogpt.py
Original file line number Diff line number Diff line change
Expand Up @@ -683,6 +683,7 @@ def forward(
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.Tensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[TransformersKwargs],
) -> Union[tuple, CausalLMOutputWithCrossAttentions]:
r"""
Expand All @@ -707,25 +708,22 @@ def forward(
**kwargs,
)

sequence_output = outputs[0]
prediction_scores = self.output_projection(sequence_output)
hidden_states = outputs[0]
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.output_projection(hidden_states[:, slice_indices, :])

lm_loss = None
loss = None
if labels is not None:
lm_loss = self.loss_function(
prediction_scores,
labels,
vocab_size=self.config.vocab_size,
**kwargs,
)
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)

if not return_dict:
output = (prediction_scores,) + outputs[1:]
return ((lm_loss,) + output) if lm_loss is not None else output
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output

return CausalLMOutputWithCrossAttentions(
loss=lm_loss,
logits=prediction_scores,
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
Expand Down
24 changes: 11 additions & 13 deletions src/transformers/models/biogpt/modular_biogpt.py
Original file line number Diff line number Diff line change
Expand Up @@ -511,6 +511,7 @@ def forward(
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.Tensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[TransformersKwargs],
) -> Union[tuple, CausalLMOutputWithCrossAttentions]:
r"""
Expand All @@ -535,25 +536,22 @@ def forward(
**kwargs,
)

sequence_output = outputs[0]
prediction_scores = self.output_projection(sequence_output)
hidden_states = outputs[0]
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.output_projection(hidden_states[:, slice_indices, :])

lm_loss = None
loss = None
if labels is not None:
lm_loss = self.loss_function(
prediction_scores,
labels,
vocab_size=self.config.vocab_size,
**kwargs,
)
loss = self.loss_function(logits=logits, labels=labels, vocab_size=self.config.vocab_size, **kwargs)

if not return_dict:
output = (prediction_scores,) + outputs[1:]
return ((lm_loss,) + output) if lm_loss is not None else output
output = (logits,) + outputs[1:]
return ((loss,) + output) if loss is not None else output

return CausalLMOutputWithCrossAttentions(
loss=lm_loss,
logits=prediction_scores,
loss=loss,
logits=logits,
past_key_values=outputs.past_key_values,
hidden_states=outputs.hidden_states,
attentions=outputs.attentions,
Expand Down
6 changes: 5 additions & 1 deletion src/transformers/models/blenderbot/modeling_blenderbot.py
Original file line number Diff line number Diff line change
Expand Up @@ -1424,6 +1424,7 @@ def forward(
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
) -> Union[tuple, CausalLMOutputWithCrossAttentions]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Expand Down Expand Up @@ -1469,7 +1470,10 @@ def forward(
cache_position=cache_position,
)

logits = self.lm_head(outputs[0])
hidden_states = outputs[0]
# Only compute necessary logits
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])

loss = None
if labels is not None:
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1384,6 +1384,7 @@ def forward(
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
) -> Union[tuple, CausalLMOutputWithCrossAttentions]:
r"""
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
Expand Down Expand Up @@ -1429,7 +1430,10 @@ def forward(
cache_position=cache_position,
)

logits = self.lm_head(outputs[0])
hidden_states = outputs[0]
# Only compute necessary logits
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])

loss = None
if labels is not None:
Expand Down
4 changes: 4 additions & 0 deletions src/transformers/models/blip/modeling_blip.py
Original file line number Diff line number Diff line change
Expand Up @@ -826,6 +826,7 @@ def forward(
attention_mask: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
interpolate_pos_encoding: bool = False,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[TransformersKwargs],
) -> Union[tuple, BlipForConditionalGenerationModelOutput]:
r"""
Expand Down Expand Up @@ -862,6 +863,7 @@ def forward(
encoder_hidden_states=image_embeds,
labels=labels,
reduction="mean",
logits_to_keep=logits_to_keep,
**kwargs,
)

Expand Down Expand Up @@ -994,6 +996,7 @@ def forward(
attention_mask: Optional[torch.LongTensor] = None,
labels: Optional[torch.LongTensor] = None,
interpolate_pos_encoding: bool = False,
logits_to_keep: Union[int, torch.Tensor] = 0,
**kwargs: Unpack[TransformersKwargs],
) -> Union[tuple, BlipTextVisionModelOutput]:
r"""
Expand Down Expand Up @@ -1065,6 +1068,7 @@ def forward(
encoder_attention_mask=attention_mask,
labels=labels,
reduction="mean",
logits_to_keep=logits_to_keep,
**kwargs,
)

Expand Down
7 changes: 5 additions & 2 deletions src/transformers/models/blip/modeling_blip_text.py
Original file line number Diff line number Diff line change
Expand Up @@ -850,6 +850,7 @@ def forward(
is_decoder: Optional[bool] = True,
reduction: Optional[str] = "mean",
cache_position: Optional[torch.Tensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
) -> Union[tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
r"""
encoder_hidden_states (`torch.FloatTensor`, *optional*): Sequence of
Expand Down Expand Up @@ -893,8 +894,10 @@ def forward(
cache_position=cache_position,
)

sequence_output = outputs[0]
prediction_scores = self.cls(sequence_output)
hidden_states = outputs[0]
# Only compute necessary logits
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
prediction_scores = self.cls(hidden_states[:, slice_indices, :])

if return_logits:
return prediction_scores[:, :-1, :].contiguous()
Expand Down
16 changes: 8 additions & 8 deletions src/transformers/models/bloom/modeling_bloom.py
Original file line number Diff line number Diff line change
Expand Up @@ -823,6 +823,7 @@ def forward(
output_hidden_states: Optional[bool] = None,
return_dict: Optional[bool] = None,
cache_position: Optional[torch.LongTensor] = None,
logits_to_keep: Union[int, torch.Tensor] = 0,
**deprecated_arguments,
) -> Union[tuple[torch.Tensor], CausalLMOutputWithCrossAttentions]:
r"""
Expand Down Expand Up @@ -867,29 +868,28 @@ def forward(
return_dict=return_dict,
cache_position=cache_position,
)
hidden_states = transformer_outputs[0]

lm_logits = self.lm_head(hidden_states)
hidden_states = transformer_outputs[0]
# Only compute necessary logits, and do not upcast them to float if we are not computing the loss
slice_indices = slice(-logits_to_keep, None) if isinstance(logits_to_keep, int) else logits_to_keep
logits = self.lm_head(hidden_states[:, slice_indices, :])

loss = None
if labels is not None:
# move labels to correct device
labels = labels.to(lm_logits.device)
# Flatten the tokens
loss = self.loss_function(
lm_logits,
logits,
labels,
vocab_size=self.config.vocab_size,
num_items_in_batch=num_items_in_batch,
)

if not return_dict:
output = (lm_logits,) + transformer_outputs[1:]
output = (logits,) + transformer_outputs[1:]
return ((loss,) + output) if loss is not None else output

return CausalLMOutputWithCrossAttentions(
loss=loss,
logits=lm_logits,
logits=logits,
past_key_values=transformer_outputs.past_key_values,
hidden_states=transformer_outputs.hidden_states,
attentions=transformer_outputs.attentions,
Expand Down
Loading