Skip to content
Open
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
93 changes: 46 additions & 47 deletions python/sglang/srt/managers/scheduler_pp_mixin.py
Original file line number Diff line number Diff line change
Expand Up @@ -17,7 +17,12 @@
get_logprob_from_pp_outputs,
)
from sglang.srt.model_executor.forward_batch_info import PPProxyTensors
from sglang.srt.utils import DynamicGradMode, broadcast_pyobj, point_to_point_pyobj, require_mlp_sync
from sglang.srt.utils import (
DynamicGradMode,
broadcast_pyobj,
point_to_point_pyobj,
require_mlp_sync,
)

logger = logging.getLogger(__name__)

Expand Down Expand Up @@ -183,23 +188,13 @@ def _pp_send_output_to_next_stage(

def _pp_send_recv_and_preprocess_output_tensors(
self: Scheduler,
next_first_rank_mb_id: int,
next_mb_id: int,
mbs: List[ScheduleBatch],
mb_metadata: List[PPBatchMetadata],
last_rank_comm_queue: deque[Tuple[torch.cuda.Event, PPProxyTensors]],
pp_outputs: PPProxyTensors | None,
) -> Tuple[PPProxyTensors, List[P2PWork], torch.cuda.Event]:
next_pp_outputs = None
d2h_event = None
batch_result = None
send_output_work = self._pp_send_output_to_next_stage(
next_first_rank_mb_id,
mbs,
last_rank_comm_queue,
pp_outputs,
)

if mbs[next_mb_id] is not None:
with torch.profiler.record_function("recv_res_dict_from_prev_stage"):
next_pp_outputs = PPProxyTensors(self._pp_recv_dict_from_prev_stage())
Expand All @@ -211,7 +206,7 @@ def _pp_send_recv_and_preprocess_output_tensors(
d2h_event = torch.cuda.Event()
d2h_event.record(torch.cuda.current_stream())

return next_pp_outputs, batch_result, d2h_event, send_output_work
return next_pp_outputs, batch_result, d2h_event

def _pp_launch_batch(
self: Scheduler,
Expand Down Expand Up @@ -301,49 +296,45 @@ def event_loop_pp(self: Scheduler):
mbs[mb_id] = self.get_next_batch_to_run()
self.running_mbs[mb_id] = self.running_batch
self.cur_batch: Optional[ScheduleBatch] = mbs[mb_id]
if self.cur_batch:
server_is_idle = False
pp_proxy_tensors = self._pp_recv_proxy_tensors()
next_pp_outputs = None
next_batch_result = None
d2h_event = None
if self.server_args.pp_async_batch_depth > 0:
if (
self.server_args.pp_async_batch_depth > 0
or not self.pp_group.is_last_rank
):
self._pp_commit_comm_work(work=send_output_work)
next_pp_outputs, next_batch_result, d2h_event, send_output_work = (
self._pp_send_recv_and_preprocess_output_tensors(
next_first_rank_mb_id,
next_mb_id,
mbs,
mb_metadata,
last_rank_comm_queue,
pp_outputs,
)
send_output_work = self._pp_send_output_to_next_stage(
next_first_rank_mb_id,
mbs,
last_rank_comm_queue,
pp_outputs,
)
self._pp_commit_comm_work(send_proxy_work)
if self.cur_batch:
server_is_idle = False
pp_proxy_tensors = self._pp_recv_proxy_tensors()
result, event = self._pp_launch_batch(
mb_id, pp_proxy_tensors, mb_metadata, last_rank_comm_queue
)
if self.server_args.pp_async_batch_depth == 0:
if (
self.server_args.pp_async_batch_depth == 0
and self.pp_group.is_last_rank
):
self._pp_commit_comm_work(work=send_output_work)
next_pp_outputs, next_batch_result, d2h_event, send_output_work = (
self._pp_send_recv_and_preprocess_output_tensors(
next_first_rank_mb_id,
next_mb_id,
mbs,
mb_metadata,
last_rank_comm_queue,
pp_outputs,
)
send_output_work = self._pp_send_output_to_next_stage(
next_first_rank_mb_id,
mbs,
last_rank_comm_queue,
pp_outputs,
)
if mbs[next_mb_id] is not None:
d2h_event.synchronize()
with torch.profiler.record_function("process_batch_result"):
self._pp_process_batch_result(
mbs[next_mb_id],
next_batch_result,
)
last_mbs[next_mb_id] = mbs[next_mb_id]
next_pp_outputs = None
next_batch_result = None
d2h_event = None
next_pp_outputs, next_batch_result, d2h_event = (
self._pp_send_recv_and_preprocess_output_tensors(
next_mb_id,
mbs,
mb_metadata,
)
)
self._pp_commit_comm_work(send_proxy_work)
if not self.pp_group.is_last_rank:
if self.cur_batch:
torch.cuda.current_stream().wait_event(event)
Expand All @@ -354,6 +345,14 @@ def event_loop_pp(self: Scheduler):
result.pp_hidden_states_proxy_tensors.tensors,
async_send=True,
)
if mbs[next_mb_id] is not None:
d2h_event.synchronize()
with torch.profiler.record_function("process_batch_result"):
self._pp_process_batch_result(
mbs[next_mb_id],
next_batch_result,
)
last_mbs[next_mb_id] = mbs[next_mb_id]

# if self.delayed_weight_sync_fn:
# self.delayed_weight_sync_fn()
Expand Down