Skip to content
Open
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions CMakeLists.txt
Original file line number Diff line number Diff line change
Expand Up @@ -246,6 +246,7 @@ endif()
set(VLLM_EXT_SRC
"csrc/mamba/mamba_ssm/selective_scan_fwd.cu"
"csrc/cache_kernels.cu"
"csrc/cache_kernels_fused.cu"
"csrc/attention/paged_attention_v1.cu"
"csrc/attention/paged_attention_v2.cu"
"csrc/attention/merge_attn_states.cu"
Expand Down
7 changes: 7 additions & 0 deletions csrc/cache.h
Original file line number Diff line number Diff line change
Expand Up @@ -36,6 +36,13 @@ void concat_and_cache_mla(torch::Tensor& kv_c, torch::Tensor& k_pe,
const std::string& kv_cache_dtype,
torch::Tensor& scale);

// NOTE: k_pe and kv_c order is flipped compared to concat_and_cache_mla
void concat_and_cache_mla_rope_fused(
torch::Tensor& positions, torch::Tensor& q_pe, torch::Tensor& k_pe,
torch::Tensor& kv_c, torch::Tensor& rope_cos_sin_cache, bool rope_is_neox,
torch::Tensor& kv_cache_slot_mapping, torch::Tensor& kv_cache,
const std::string& kv_cache_dtype, torch::Tensor& kv_cache_quant_scale);

// Just for unittest
void convert_fp8(torch::Tensor& dst_cache, torch::Tensor& src_cache,
const double scale, const std::string& kv_cache_dtype);
Expand Down
277 changes: 277 additions & 0 deletions csrc/cache_kernels_fused.cu
Original file line number Diff line number Diff line change
@@ -0,0 +1,277 @@
#include <torch/all.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>

#include "cuda_compat.h"
#include "dispatch_utils.h"

#include "quantization/fp8/common.cuh"
#ifdef USE_ROCM
#include "quantization/fp8/amd/quant_utils.cuh"
#else
#include "quantization/fp8/nvidia/quant_utils.cuh"
#endif

#ifdef USE_ROCM
#include <hip/hip_bf16.h>
typedef __hip_bfloat16 __nv_bfloat16;
#endif

namespace vllm {

// NOTE Be EXTRA careful with raw_kv_scalar_t, for __half and __nv_bfloat16 it's
// using u16 as the backing type.
template <typename qk_t, bool IS_NEOX, typename raw_kv_scalar_t,
typename cache_t, Fp8KVCacheDataType kv_dt>
__global__ void concat_and_cache_mla_rope_fused_kernel(
const int64_t* __restrict__ positions, // [num_tokens]
qk_t* __restrict__ q_pe, // [num_tokens, num_q_heads, rot_dim]
qk_t* __restrict__ k_pe, // [num_tokens, rot_dim]
const qk_t* __restrict__ kv_c, // [num_tokens, kv_lora_rank]
const qk_t* __restrict__ rope_cos_sin_cache, // [max_position, 2,
// rot_dim // 2]
const int rot_dim, const int64_t q_pe_stride_token,
const int64_t q_pe_stride_head, const int64_t k_pe_stride,
const int64_t kv_c_stride, const int num_q_heads,
cache_t* __restrict__ kv_cache, // [num_blocks, block_size, (kv_lora_rank +
// rot_dim)]
const int64_t* __restrict__ kv_cache_slot_mapping, // [num_tokens]
const int block_stride, const int entry_stride, const int kv_lora_rank,
const int block_size, const float* kv_cache_quant_scale) {
// Each thread block is responsible for one token.
const int64_t token_idx = blockIdx.x;
const int64_t pos = positions[token_idx];

const qk_t* cos_sin_ptr = rope_cos_sin_cache + pos * rot_dim;

const int embed_dim = rot_dim / 2;

// Q ROPE
const int nq = num_q_heads * embed_dim;
for (int i = threadIdx.x; i < nq; i += blockDim.x) {
int head_idx = i / embed_dim;
int pair_idx = i % embed_dim;

// NOTE: Would be nice to have interleaved sin/cos so we could just load
// both at the same time.
qk_t cos = VLLM_LDG(cos_sin_ptr + pair_idx);
qk_t sin = VLLM_LDG(cos_sin_ptr + pair_idx + embed_dim);

qk_t* q_pe_head_ptr =
q_pe + token_idx * q_pe_stride_token + head_idx * q_pe_stride_head;

int pair_idx_x, pair_idx_y;
if constexpr (IS_NEOX) {
// GPT-NeoX style rotary embedding.
pair_idx_x = pair_idx;
pair_idx_y = embed_dim + pair_idx;
} else {
// GPT-J style rotary embedding.
pair_idx_x = pair_idx * 2;
pair_idx_y = pair_idx * 2 + 1;
}

qk_t x_src = q_pe_head_ptr[pair_idx_x];
qk_t y_src = q_pe_head_ptr[pair_idx_y];

qk_t x_dst = x_src * cos - y_src * sin;
qk_t y_dst = y_src * cos + x_src * sin;

q_pe_head_ptr[pair_idx_x] = x_dst;
q_pe_head_ptr[pair_idx_y] = y_dst;
}

const int64_t slot_idx = kv_cache_slot_mapping[token_idx];
const int64_t block_idx = slot_idx / block_size;
const int64_t entry_idx = slot_idx % block_size;

// NOTE: slot_idx can be -1 if the token is padded
if (slot_idx < 0) {
return;
}

// K with 1 HEAD
for (int i = threadIdx.x; i < embed_dim; i += blockDim.x) {
int pair_idx = i;

qk_t cos = VLLM_LDG(cos_sin_ptr + pair_idx);
qk_t sin = VLLM_LDG(cos_sin_ptr + pair_idx + embed_dim);

qk_t* k_pe_head_ptr = k_pe + token_idx * k_pe_stride;

int pair_idx_x, pair_idx_y;
if constexpr (IS_NEOX) {
// GPT-NeoX style rotary embedding.
pair_idx_x = pair_idx;
pair_idx_y = embed_dim + pair_idx;
} else {
// GPT-J style rotary embedding.
pair_idx_x = pair_idx * 2;
pair_idx_y = pair_idx * 2 + 1;
}

qk_t x_src = k_pe_head_ptr[pair_idx_x];
qk_t y_src = k_pe_head_ptr[pair_idx_y];

qk_t x_dst = x_src * cos - y_src * sin;
qk_t y_dst = y_src * cos + x_src * sin;

k_pe_head_ptr[pair_idx_x] = x_dst;
k_pe_head_ptr[pair_idx_y] = y_dst;

// NOTE Why is this monster necessary?
// When K is of type float16, the actual template replacement for
// raw_kv_scalar_t with be u16. That's why it's used at the last moment
// otherwise CUDA ALU would break.
const raw_kv_scalar_t raw_x_value =
*reinterpret_cast<const raw_kv_scalar_t*>(&x_dst);
const raw_kv_scalar_t raw_y_value =
*reinterpret_cast<const raw_kv_scalar_t*>(&y_dst);

cache_t* kv_cache_ptr = kv_cache + block_idx * block_stride +
entry_idx * entry_stride + kv_lora_rank;

// MLA Cache Store
if constexpr (kv_dt == Fp8KVCacheDataType::kAuto) {
kv_cache_ptr[pair_idx_x] = raw_x_value;
kv_cache_ptr[pair_idx_y] = raw_y_value;
} else {
kv_cache_ptr[pair_idx_x] =
fp8::scaled_convert<cache_t, raw_kv_scalar_t, kv_dt>(
raw_x_value, *kv_cache_quant_scale);
kv_cache_ptr[pair_idx_y] =
fp8::scaled_convert<cache_t, raw_kv_scalar_t, kv_dt>(
raw_y_value, *kv_cache_quant_scale);
}
}

// NOPE
for (int i = threadIdx.x; i < kv_lora_rank; i += blockDim.x) {
const qk_t* src_ptr = kv_c + token_idx * kv_c_stride + i;
const raw_kv_scalar_t src_value =
*reinterpret_cast<const raw_kv_scalar_t*>(src_ptr);

cache_t* kv_cache_ptr =
kv_cache + block_idx * block_stride + entry_idx * entry_stride;

if constexpr (kv_dt == Fp8KVCacheDataType::kAuto) {
kv_cache_ptr[i] = src_value;
} else {
kv_cache_ptr[i] = fp8::scaled_convert<cache_t, raw_kv_scalar_t, kv_dt>(
src_value, *kv_cache_quant_scale);
}
}
}

} // namespace vllm

#define CALL_CONCAT_AND_CACHE_MLA_ROPE_FUSED(RAW_KV_T, CACHE_T, KV_DTYPE) \
do { \
VLLM_DISPATCH_FLOATING_TYPES(q_pe.scalar_type(), "qk_scalar_type", [&] { \
using qk_t = scalar_t; \
if (rope_is_neox) { \
vllm::concat_and_cache_mla_rope_fused_kernel<qk_t, true, RAW_KV_T, \
CACHE_T, KV_DTYPE> \
<<<grid, block, 0, stream>>>( \
positions.data_ptr<int64_t>(), q_pe.data_ptr<qk_t>(), \
k_pe.data_ptr<qk_t>(), kv_c.data_ptr<qk_t>(), \
rope_cos_sin_cache.data_ptr<qk_t>(), rot_dim, \
q_pe_stride_token, q_pe_stride_head, k_pe_stride, kv_c_stride, \
num_q_heads, reinterpret_cast<CACHE_T*>(kv_cache.data_ptr()), \
kv_cache_slot_mapping.data_ptr<int64_t>(), block_stride, \
entry_stride, kv_lora_rank, block_size, \
kv_cache_quant_scale.data_ptr<float>()); \
} else { \
vllm::concat_and_cache_mla_rope_fused_kernel<qk_t, false, RAW_KV_T, \
CACHE_T, KV_DTYPE> \
<<<grid, block, 0, stream>>>( \
positions.data_ptr<int64_t>(), q_pe.data_ptr<qk_t>(), \
k_pe.data_ptr<qk_t>(), kv_c.data_ptr<qk_t>(), \
rope_cos_sin_cache.data_ptr<qk_t>(), rot_dim, \
q_pe_stride_token, q_pe_stride_head, k_pe_stride, kv_c_stride, \
num_q_heads, reinterpret_cast<CACHE_T*>(kv_cache.data_ptr()), \
kv_cache_slot_mapping.data_ptr<int64_t>(), block_stride, \
entry_stride, kv_lora_rank, block_size, \
kv_cache_quant_scale.data_ptr<float>()); \
} \
}); \
} while (false)

// Executes RoPE on q_pe and k_pe, then writes k_pe and kv_c in the kv cache.
// q_pe and k_pe are modified in place.
void concat_and_cache_mla_rope_fused(
torch::Tensor& positions, // [num_tokens]
torch::Tensor& q_pe, // [num_tokens, num_q_heads, rot_dim]
torch::Tensor& k_pe, // [num_tokens, rot_dim]
torch::Tensor& kv_c, // [num_tokens, kv_lora_rank]
torch::Tensor& rope_cos_sin_cache, // [max_position, rot_dim]
bool rope_is_neox,
torch::Tensor&
kv_cache_slot_mapping, // [num_tokens] or [num_actual_tokens]
torch::Tensor&
kv_cache, // [num_blocks, block_size, (kv_lora_rank + rot_dim)]
const std::string& kv_cache_dtype, torch::Tensor& kv_cache_quant_scale) {
const int64_t num_tokens = q_pe.size(0);

const int num_q_heads = q_pe.size(1);
const int rot_dim = q_pe.size(2);
const int kv_lora_rank = kv_c.size(1);

TORCH_CHECK(positions.size(0) >=
num_tokens); // CUDA Graphs might pad this for us
TORCH_CHECK_EQ(positions.dim(), 1);
TORCH_CHECK_EQ(positions.scalar_type(), c10::ScalarType::Long);

TORCH_CHECK_EQ(q_pe.size(0), num_tokens);
TORCH_CHECK_EQ(q_pe.size(1), num_q_heads);
TORCH_CHECK_EQ(q_pe.size(2), rot_dim);
TORCH_CHECK_EQ(q_pe.dim(), 3);

TORCH_CHECK_EQ(k_pe.size(0), num_tokens);
TORCH_CHECK_EQ(k_pe.size(1), rot_dim);
TORCH_CHECK_EQ(k_pe.dim(), 2);
TORCH_CHECK_EQ(k_pe.scalar_type(), q_pe.scalar_type());

TORCH_CHECK_EQ(kv_c.size(0), num_tokens);
TORCH_CHECK_EQ(kv_c.size(1), kv_lora_rank);
TORCH_CHECK_EQ(kv_c.dim(), 2);
TORCH_CHECK_EQ(kv_c.scalar_type(), q_pe.scalar_type());
TORCH_CHECK_EQ(kv_c.dtype(), q_pe.dtype());

TORCH_CHECK_EQ(rope_cos_sin_cache.size(1), rot_dim);
TORCH_CHECK_EQ(rope_cos_sin_cache.scalar_type(), q_pe.scalar_type());

TORCH_CHECK_EQ(kv_cache_slot_mapping.size(0), num_tokens);
TORCH_CHECK_EQ(kv_cache_slot_mapping.scalar_type(), c10::ScalarType::Long);

TORCH_CHECK_EQ(kv_cache.size(2), kv_lora_rank + rot_dim);
TORCH_CHECK_EQ(kv_cache.dim(), 3);

TORCH_CHECK_EQ(kv_cache_quant_scale.numel(), 1);
TORCH_CHECK_EQ(kv_cache_quant_scale.scalar_type(), c10::ScalarType::Float);

int64_t q_pe_stride_token = q_pe.stride(0);
int64_t q_pe_stride_head = q_pe.stride(1);

int64_t k_pe_stride = k_pe.stride(0);
int64_t kv_c_stride = kv_c.stride(0);

int block_size = kv_cache.size(1);

int block_stride = kv_cache.stride(0);
int entry_stride = kv_cache.stride(1);

int rope_block_size = std::min(num_q_heads * rot_dim / 2, 512);
int mla_block_size = kv_lora_rank;
int thread_block_size =
std::min(std::max(rope_block_size, mla_block_size), 512);

dim3 grid(num_tokens, 1, 1);
dim3 block(thread_block_size, 1, 1);

const at::cuda::OptionalCUDAGuard device_guard(device_of(positions));
const cudaStream_t stream = at::cuda::getCurrentCUDAStream();

DISPATCH_BY_KV_CACHE_DTYPE(kv_c.dtype(), kv_cache_dtype,
CALL_CONCAT_AND_CACHE_MLA_ROPE_FUSED);
}
16 changes: 16 additions & 0 deletions csrc/torch_bindings.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -692,6 +692,22 @@ TORCH_LIBRARY_EXPAND(CONCAT(TORCH_EXTENSION_NAME, _cache_ops), cache_ops) {
" Tensor scale) -> ()");
cache_ops.impl("concat_and_cache_mla", torch::kCUDA, &concat_and_cache_mla);

// Rotate Q and K, then write to kv cache for MLA
cache_ops.def(
"concat_and_cache_mla_rope_fused("
" Tensor positions,"
" Tensor! q_pe,"
" Tensor! k_pe,"
" Tensor kv_c,"
" Tensor cos_sin_cache,"
" bool is_neox,"
" Tensor slot_mapping,"
" Tensor! kv_cache,"
" str kv_cache_dtype,"
" Tensor kv_cache_scale) -> ()");
cache_ops.impl("concat_and_cache_mla_rope_fused", torch::kCUDA,
&concat_and_cache_mla_rope_fused);

// Convert the key and value cache to fp8 data type.
cache_ops.def(
"convert_fp8(Tensor! dst_cache, Tensor src_cache, float scale, "
Expand Down
Loading
Loading