Skip to content

2021rahul/Feature_Subset_Selection_Genetic_Algorithm

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

5 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Feature_Subset_Selection_Genetic_Algorithm

In a Feature Subset Selection (FSS) problem, the objective is to obtain an optimal feature subset on which the learning algorithm can focus and neglect the irrelevant features. A wrapper formulates the FSS as a combinatorial optimization problem. In this paper, we propose an elitist quantum inspired Differential Evolution (QDE) algorithm for FSS. The performance of QDE is found to be significantly better than that of Binary Differential Evolution (BDE) algorithm on three benchmark problems taken from literature. In both cases, logistic regression was chosen as the classifier. Further, QDE outperformed not only the extant algorithms reported in literature but also the t-statistic cum logistic regression based filter method for FSS.

https://link.springer.com/chapter/10.1007/978-3-319-26181-2_11

Releases

No releases published

Packages

No packages published

Languages