Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions src/lib.rs
Original file line number Diff line number Diff line change
Expand Up @@ -19,6 +19,7 @@ extern crate rlp_derive;

mod nibbleslice;
pub mod node;
pub mod proof;
mod skewed;
#[allow(dead_code)]
pub mod snapshot;
Expand Down
277 changes: 277 additions & 0 deletions src/proof.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,277 @@
// Copyright 2020 Kodebox, Inc.
// This file is part of CodeChain.
//
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU Affero General Public License as
// published by the Free Software Foundation, either version 3 of the
// License, or (at your option) any later version.
//
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU Affero General Public License for more details.
//
// You should have received a copy of the GNU Affero General Public License
// along with this program. If not, see <https://www.gnu.org/licenses/>.

use crate::nibbleslice::NibbleSlice;
use crate::node::Node;
use ccrypto::{blake256, BLAKE_NULL_RLP};
use primitives::Bytes;
use primitives::H256;

// Unit of a proof.
//#[derive(Clone, Eq, PartialEq, Debug, RlpEncodable, RlpDecodable)]
#[derive(Clone, Eq, PartialEq, Debug)]
pub struct CryptoProofUnit {
pub root: H256,
pub key: H256,
pub value: Option<Bytes>, // None in case of absence
}

#[derive(Clone, Eq, PartialEq, Debug)]
pub struct CryptoProof(pub Vec<Bytes>);

pub trait CryptoStructure {
fn make_proof(&self, key: &H256) -> crate::Result<(CryptoProofUnit, CryptoProof)>;
}

/// A verification logic of TrieDB's Merkle proof.
/// For the format of proof, check the make_proof() function.
/// It verifies the proof with a given unit of test.
/// It should never abort or fail, but only return 'false' as a result of getting an invalid or ill-formed proof.
pub fn verify(proof: &CryptoProof, test: &CryptoProofUnit) -> bool {
// step1: verify the value
fn step1(proof: &CryptoProof, test: &CryptoProofUnit) -> bool {
match Node::decoded(&proof.0.last().unwrap()) {
Some(x) => match x {
Node::Leaf(_, value) => test.value.as_ref().unwrap() == &value,
_ => false,
},
_ => false,
}
};

// step2: verify the root
fn step2(proof: &CryptoProof, test: &CryptoProofUnit) -> bool {
blake256(&proof.0[0]) == test.root
};

// step3 (presence): verify the key
fn step3_p(proof: &CryptoProof, test: &CryptoProofUnit) -> bool {
fn verify_branch(path: &NibbleSlice<'_>, hash: &H256, proof: &[Bytes]) -> bool {
if *hash != blake256(&proof[0]) {
return false
}
match Node::decoded(&proof[0]) {
Some(Node::Leaf(partial, _)) => path == &partial,
Some(Node::Branch(partial, table)) => {
if proof.len() < 2 {
// detect ill-formed proof
return false
}
if !path.starts_with(&partial) {
return false
}
match table[path.at(partial.len()) as usize] {
Some(x) => verify_branch(&path.mid(partial.len() + 1), &x, &proof[1..]),
None => false,
}
}
None => false,
}
};
verify_branch(&NibbleSlice::new(&test.key), &test.root, &proof.0)
};

// step3 (absence): verify the key.
fn step3_a(proof: &CryptoProof, test: &CryptoProofUnit) -> bool {
fn verify_branch(path: &NibbleSlice<'_>, hash: &H256, proof: &[Bytes]) -> bool {
if *hash != blake256(&proof[0]) {
return false
}
match Node::decoded(&proof[0]) {
Some(Node::Leaf(partial, _)) => path != &partial, // special case : there is only one leaf node in the trie,
Some(Node::Branch(partial, children)) => {
if !path.starts_with(&partial) {
return false
}
match children[path.at(partial.len()) as usize] {
Some(x) => proof.len() >= 2 && verify_branch(&path.mid(partial.len() + 1), &x, &proof[1..]),
None => proof.len() == 1,
}
}
None => false,
}
};
verify_branch(&NibbleSlice::new(&test.key), &test.root, &proof.0)
};

if proof.0.is_empty() {
return test.root == BLAKE_NULL_RLP && test.value.is_none() // special case of an empty trie.
}
if test.value.is_some() {
step1(proof, test) && step2(proof, test) && step3_p(proof, test)
} else {
step2(proof, test) && step3_a(proof, test)
}
}


#[cfg(test)]
mod tests {
extern crate rand;

use super::*;
use crate::*;
use cdb::MemoryDB;
use rand::{rngs::StdRng, Rng};

fn simple_test<'db>(t: &TrieDB<'db>, key: &H256, value: Option<&[u8]>, key_proof: &H256, result: bool) {
let unit = CryptoProofUnit {
root: *t.root(),
key: *key,
value: value.map(|x| x.to_vec()),
};
let proof = t.make_proof(key_proof).unwrap();
assert_eq!(verify(&proof.1, &unit), result);
}

#[test]
fn empty_trie() {
let iteration = 100;
let seed = [0 as u8; 32];
let mut rng: StdRng = rand::SeedableRng::from_seed(seed);

for _ in 0..iteration {
let mut memdb = MemoryDB::new();
let mut root = H256::zero();
TrieDBMut::new(&mut memdb, &mut root);

// unused pair
let k1 = format!("{}", rng.gen::<u64>());
let v1 = format!("{}", rng.gen::<u64>());
let (keyu, valu) = { (blake256(&k1), v1.as_bytes()) };

let t = TrieDB::try_new(&memdb, &root).unwrap();

simple_test(&t, &keyu, Some(valu), &keyu, false);
simple_test(&t, &keyu, None, &keyu, true);
}
}

#[test]
fn single_trie() {
let iteration = 100;
let seed = [0 as u8; 32];
let mut rng: StdRng = rand::SeedableRng::from_seed(seed);

for _ in 0..iteration {
let mut memdb = MemoryDB::new();
let mut root = H256::zero();
let mut mt = TrieDBMut::new(&mut memdb, &mut root);

// unused pair
let ku = format!("{}", rng.gen::<u64>());
let vu = format!("{}", rng.gen::<u64>());
let (keyu, valu) = { (blake256(&ku), vu.as_bytes()) };

let k1 = format!("{}", rng.gen::<u64>());
let v1 = format!("{}", rng.gen::<u64>());
let (key1, val1) = { (blake256(&k1), v1.as_bytes()) };
mt.insert(&k1.as_bytes(), val1).unwrap();

if key1 == keyu || val1 == valu {
continue
}

let t = TrieDB::try_new(&memdb, &root).unwrap();

// Be careful: there are some case where the proof is not unique.
simple_test(&t, &key1, Some(val1), &key1, true);
simple_test(&t, &key1, Some(val1), &keyu, true); //be careful!
simple_test(&t, &key1, Some(valu), &key1, false);
simple_test(&t, &key1, Some(valu), &keyu, false);
simple_test(&t, &key1, None, &key1, false);
simple_test(&t, &key1, None, &keyu, false);
simple_test(&t, &keyu, Some(val1), &key1, false);
simple_test(&t, &keyu, Some(val1), &keyu, false);
simple_test(&t, &keyu, Some(valu), &key1, false);
simple_test(&t, &keyu, Some(valu), &keyu, false);
simple_test(&t, &keyu, None, &key1, true); //be careful!
simple_test(&t, &keyu, None, &keyu, true);
}
}

#[test]
fn some_trie() {
let iteration = 100;
let size = 234;
let seed = [0 as u8; 32];
let mut rng: StdRng = rand::SeedableRng::from_seed(seed);

for _ in 0..iteration {
let mut memdb = MemoryDB::new();
let mut root = H256::zero();
let mut mt = TrieDBMut::new(&mut memdb, &mut root);

// unused pair
let ku = format!("{}", rng.gen::<u64>());
let vu = format!("{}", rng.gen::<u64>());
let (keyu, valu) = { (blake256(&ku), vu.as_bytes()) };

let k1 = format!("{}", rng.gen::<u64>());
let v1 = format!("{}", rng.gen::<u64>());
let (key1, val1) = { (blake256(&k1), v1.as_bytes()) };
mt.insert(&k1.as_bytes(), val1).unwrap();

let k2 = format!("{}", rng.gen::<u64>());
let v2 = format!("{}", rng.gen::<u64>());
let (key2, val2) = { (blake256(&k2), v2.as_bytes()) };
mt.insert(&k2.as_bytes(), val2).unwrap();

if key1 == keyu || val1 == valu || key2 == keyu || val2 == valu {
continue
}

let mut flag = true;
for _ in 0..size {
let k = format!("{}", rng.gen::<u64>());
let v = format!("{}", rng.gen::<u64>());
mt.insert(k.as_bytes(), v.as_bytes()).unwrap();
if blake256(k) == keyu || v.as_bytes() == valu {
flag = false;
break
}
}
if !flag {
continue // skip this iteration
}

let t = TrieDB::try_new(&memdb, &root).unwrap();

simple_test(&t, &key1, Some(val1), &key1, true);
simple_test(&t, &key1, Some(val1), &key2, false);
simple_test(&t, &key1, Some(val1), &keyu, false);
simple_test(&t, &key1, Some(val2), &key1, false);
simple_test(&t, &key1, Some(val2), &key2, false);
simple_test(&t, &key1, Some(val2), &keyu, false);
simple_test(&t, &key1, None, &key1, false);
simple_test(&t, &key1, None, &key2, false);
simple_test(&t, &key1, None, &keyu, false);

simple_test(&t, &keyu, Some(val1), &key1, false);
simple_test(&t, &keyu, Some(val1), &key2, false);
simple_test(&t, &keyu, Some(val1), &keyu, false);
simple_test(&t, &keyu, None, &key1, false);
simple_test(&t, &keyu, None, &key2, false);
simple_test(&t, &keyu, None, &keyu, true);
}
}

// proof is created manually here
#[test]
fn some_malicious() {
// TODO
}
}
71 changes: 65 additions & 6 deletions src/triedb.rs
Original file line number Diff line number Diff line change
Expand Up @@ -16,10 +16,12 @@

use crate::nibbleslice::NibbleSlice;
use crate::node::Node as RlpNode;
use crate::{Trie, TrieError};
use crate::proof::{CryptoProof, CryptoProofUnit, CryptoStructure};
use crate::{Node, Trie, TrieError};
use ccrypto::{blake256, BLAKE_NULL_RLP};
use cdb::HashDB;
use lru_cache::LruCache;
use primitives::Bytes;
use primitives::H256;
use std::cell::RefCell;

Expand Down Expand Up @@ -98,11 +100,7 @@ impl<'db> TrieDB<'db> {
}
Some(RlpNode::Branch(partial, children)) => {
if path.starts_with(&partial) {
self.get_aux(
&path.mid(partial.len() + 1),
children[path.mid(partial.len()).at(0) as usize],
query,
)
self.get_aux(&path.mid(partial.len() + 1), children[path.at(partial.len()) as usize], query)
} else {
Ok(None)
}
Expand Down Expand Up @@ -147,6 +145,67 @@ impl<'db> Trie for TrieDB<'db> {
}
}

impl<'db> CryptoStructure for TrieDB<'db> {
/// A proof creation logic for TrieDB.
/// A proof is basically a list of serialized trie nodes, Vec<Bytes>.
/// It starts from the one closest to the root and to the leaf. (It may not reach the leaf in absence case.)
/// Each node can be decoded with RLP. (Note that RLP doesn't guarantee format detail, so you must check our serialization code.)
/// In case of precense, the list will contain a path from the root to the leaf with the key.
/// In case of absence, the list will contain a path to the last node that matches the key.
//
// (A: [nil])
// / \
// (B, g) \
// / \ \
// (C, iant) (D, mail) (E, clang)
//
// Here, the proof of key 'gmail' will be [(RLP encoding of A), (RLP encoding of B), (RLP encoding of D)]
// Here, the proof of key 'galbi' (absence) will be [(RLP encoding of A), (RLP encoding of B)]
fn make_proof(&self, key: &H256) -> crate::Result<(CryptoProofUnit, CryptoProof)> {
// it creates a reversed proof for the sake of a more efficient push() operation. (than concat)
fn make_proof_upto(
db: &dyn HashDB,
path: &NibbleSlice<'_>,
hash: &H256,
) -> crate::Result<(Option<Bytes>, Vec<Bytes>)> {
let node_rlp = db.get(&hash).ok_or_else(|| TrieError::IncompleteDatabase(*hash))?;

match Node::decoded(&node_rlp) {
Some(Node::Leaf(partial, value)) => {
if &partial == path {
Ok((Some(value.to_vec()), vec![node_rlp]))
} else {
Ok((None, vec![node_rlp]))
}
}
Some(Node::Branch(partial, children)) => {
if path.starts_with(&partial) {
match children[path.at(partial.len()) as usize] {
Some(x) => {
let (value, mut reversed_proof) =
make_proof_upto(db, &path.mid(partial.len() + 1), &x)?;
reversed_proof.push(node_rlp);
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It's good to use the name reversed_proof!

Ok((value, reversed_proof))
}
None => Ok((None, vec![node_rlp])),
}
} else {
Ok((None, Vec::new()))
}
}
None => Ok((None, Vec::new())), // empty trie
}
}
let (value, reversed_proof) = make_proof_upto(self.db, &NibbleSlice::new(&key), self.root())?;
let unit = CryptoProofUnit {
root: *self.root(),
key: *key,
value,
};
Ok((unit, CryptoProof(reversed_proof.iter().rev().cloned().collect())))
}
}

#[cfg(test)]
mod tests {
use cdb::MemoryDB;
Expand Down