Physics-aware ML (PaML) aims to take the best from both physics-based modeling and state-of-the-art ML models to better solve scientific problems. A structured community of existing PaML methodologies that integrate prior physical knowledge or physics-based modeling into ML is built. We categorize PaML approaches into four groups based on the way physics and ML are combined, including physical data-guided ML (PDgML), physics-informed ML (PiML), physics-embedded ML (PeML), and physics-aware hybrid learning (PaHL).
-
Notifications
You must be signed in to change notification settings - Fork 1
Physics-aware ML (PaML) aims to take the best from both physics-based modeling and state-of-the-art ML models to better solve scientific problems (https://arxiv.org/abs/2310.05227)
HydroPML/PaML
Folders and files
Name | Name | Last commit message | Last commit date | |
---|---|---|---|---|
Repository files navigation
About
Physics-aware ML (PaML) aims to take the best from both physics-based modeling and state-of-the-art ML models to better solve scientific problems (https://arxiv.org/abs/2310.05227)
Resources
Stars
Watchers
Forks
Releases
No releases published
Packages 0
No packages published