Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
84 changes: 84 additions & 0 deletions docs/_posts/luca-martial/2022-02-03-w2v_cc_300d_fr.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,84 @@
---
layout: model
title: Fastext Word Embeddings in French
author: John Snow Labs
name: w2v_cc_300d
date: 2022-02-03
tags: [fr, open_source]
task: Embeddings
language: fr
edition: Spark NLP 3.4.0
spark_version: 3.0
supported: true
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Word Embeddings lookup annotator that maps tokens to vectors.

## Predicted Entities



{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/w2v_cc_300d_fr_3.4.0_3.0_1643891127135.zip){:.button.button-orange.button-orange-trans.arr.button-icon}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
documentAssembler = DocumentAssembler()\
.setInputCol("text")\
.setOutputCol("document")

tokenizer = Tokenizer()\
.setInputCols("document")\
.setOutputCol("token")

embeddings = WordEmbeddingsModel.pretrained("w2v_cc_300d", "fr")\
.setInputCols(["document", "token"])\
.setOutputCol("embeddings")
```
```scala
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")

val tokenizer = new Tokenizer()
.setInputCols("document")
.setOutputCol("token")

val embeddings = WordEmbeddingsModel.pretrained("w2v_cc_300d", "fr")
.setInputCols(Array("document", "token"))
.setOutputCol("embeddings")
```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|w2v_cc_300d|
|Type:|embeddings|
|Compatibility:|Spark NLP 3.4.0+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[document, token]|
|Output Labels:|[embeddings]|
|Language:|fr|
|Size:|1.3 GB|
|Case sensitive:|false|
|Dimension:|300|

## References

[FastText common crawl word embeddings for French](https://fasttext.cc/docs/en/crawl-vectors.html).