Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
@@ -0,0 +1,90 @@
---
layout: model
title: Russian RoBERTa Embeddings (from blinoff)
author: John Snow Labs
name: roberta_embeddings_roberta_base_russian_v0
date: 2022-04-14
tags: [ru, open_source]
task: Embeddings
language: ru
edition: Spark NLP 3.4.2
spark_version: 3.0
supported: true
article_header:
type: cover
use_language_switcher: "Python-Scala-Java"
---

## Description

Pretrained RoBERTa Embeddings model, uploaded to Hugging Face, adapted and imported into Spark NLP. `roberta-base-russian-v0` is a Russian model orginally trained by `blinoff`.

{:.btn-box}
<button class="button button-orange" disabled>Live Demo</button>
<button class="button button-orange" disabled>Open in Colab</button>
[Download](https://s3.amazonaws.com/auxdata.johnsnowlabs.com/public/models/roberta_embeddings_roberta_base_russian_v0_ru_3.4.2_3.0_1649947793512.zip){:.button.button-orange.button-orange-trans.arr.button-icon}

## How to use



<div class="tabs-box" markdown="1">
{% include programmingLanguageSelectScalaPythonNLU.html %}
```python
documentAssembler = DocumentAssembler() \
.setInputCol("text") \
.setOutputCol("document")

tokenizer = Tokenizer() \
.setInputCols("document") \
.setOutputCol("token")

embeddings = RoBertaEmbeddings.pretrained("roberta_embeddings_roberta_base_russian_v0","ru") \
.setInputCols(["document", "token"]) \
.setOutputCol("embeddings")

pipeline = Pipeline(stages=[documentAssembler, tokenizer, embeddings])

data = spark.createDataFrame([["Я люблю искра NLP"]]).toDF("text")

result = pipeline.fit(data).transform(data)
```
```scala
val documentAssembler = new DocumentAssembler()
.setInputCol("text")
.setOutputCol("document")

val tokenizer = new Tokenizer()
.setInputCols(Array("document"))
.setOutputCol("token")

val embeddings = RoBertaEmbeddings.pretrained("roberta_embeddings_roberta_base_russian_v0","ru")
.setInputCols(Array("document", "token"))
.setOutputCol("embeddings")

val pipeline = new Pipeline().setStages(Array(documentAssembler, tokenizer, embeddings))

val data = Seq("Я люблю искра NLP").toDF("text")

val result = pipeline.fit(data).transform(data)
```
</div>

{:.model-param}
## Model Information

{:.table-model}
|---|---|
|Model Name:|roberta_embeddings_roberta_base_russian_v0|
|Compatibility:|Spark NLP 3.4.2+|
|License:|Open Source|
|Edition:|Official|
|Input Labels:|[sentence, token]|
|Output Labels:|[bert]|
|Language:|ru|
|Size:|468.0 MB|
|Case sensitive:|true|

## References

- https://huggingface.co/blinoff/roberta-base-russian-v0