Sungpyo Kim1, Jeonghyeok Do1, Jaehyup Lee2†, Munchurl Kim1†
1KAIST, South Korea, 2Kyungpook National University, South Korea
†Co-corresponding authors
- July 2, 2025: Code released.
- February 26, 2025: U-Know-DiffPAN accepted to CVPR 2025 🎉.
- Add instructions for environmental setups.
- Add instructions for Data preperation setups.
- Add instructions for Train and Test.
Clone the repo and install dependencies:
git clone https://github.com/KAIST-VICLab/U-Know-DiffPAN.git
cd U-Know-DiffPAN
conda create -n uknow python=3.8
conda activate uknow
pip install -r requirements.txt
- We follow the evaluation setup from Pancollection. Download the datasets here and arrange them as follows:
Pancollection
├── training_data
│ ├── train_wv3.h5
│ ├── train_qb.h5
│ └── train_gf2.h5
│
├── test_data
│ ├── test_wv3_OrigScale_multiExm1.h5
│ ├── test_wv3_multiExm1.h5
│ └── ...
│
└── ...
Before starting training, make sure to modify the configuration files (Prior_config.py, FSA_T_config.py, FSA_S_config.py) to match your local environment (e.g., dataset paths, checkpoint directories, device settings, etc.).
# check if environment is activated properly
conda activate uknow
python main.py --stage Priornet --mode train
# FSA-T Pretrain
python main.py --stage FSA_T --mode train
# Get FSA-T output from train datasets
python main.py --stage FSA_T --mode save
After getting the .h5 format FSA-T output (dist_feature_map), arrange datasetes as follows:
Pancollection
├── training_data
│ └── ...
│
├── test_data
│ └── ...
│
├── dist_feature_map
│ ├── train_wv3.h5
│ ├── train_qb.h5
│ └── train_gf2.h5
│
└── ...
# FSA-S Train
python main.py --stage FSA_S --mode train
# FSA-S Test
python main.py --stage FSA_S --mode test
TBA ...
The project page is available at https://kaist-viclab.github.io/U-Know-DiffPAN-site/.
This work was supported by National Research Foundation of Korea (NRF) grant funded by the Korean Government [Ministry of Science and ICT (Information and Communications Technology)] (Project Number: RS- 2024-00338513, Project Title: AI-based Computer Vision Study for Satellite Image Processing and Analysis, 100%).
If you find our repository useful, please consider giving it a star ⭐ and citing our research papers in your work:
@inproceedings{kim2025u,
title={U-Know-DiffPAN: An Uncertainty-aware Knowledge Distillation Diffusion Framework with Details Enhancement for PAN-Sharpening},
author={Kim, Sungpyo and Do, Jeonghyeok and Lee, Jaehyup and Kim, Munchurl},
booktitle={Proceedings of the Computer Vision and Pattern Recognition Conference},
pages={23069--23079},
year={2025}
}