Produce Keras-like summaries of your PyTorch models.
The following code
import torch
import torch.nn as nn
import torch.nn.functional as F
from model_summary import summary
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.conv1 = nn.Conv2d(1, 32, 3, 1)
self.conv2 = nn.Conv2d(32, 64, 3, 1)
self.dropout1 = nn.Dropout(0.25)
self.dropout2 = nn.Dropout(0.5)
self.fc1 = nn.Linear(9216, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = F.relu(self.conv1(x))
x = F.relu(self.conv2(x))
x = F.max_pool2d(x, 2)
x = self.dropout1(x)
x = torch.flatten(x, 1)
x = F.relu(self.fc1(x))
x = self.dropout2(x)
x = self.fc2(x)
return F.log_softmax(x, dim=1)
net = Net()
net.conv2.requires_grad_(False) # make non-trainable
summary(net, input_shape=(1, 28, 28))
produces this output:
Model Summary:
ββββββ€βββββββββββββββββββββ€ββββββββββββββββββββββββ€ββββββββββββ
β β Layer (type) β Output Shape β Param # β
ββββββͺβββββββββββββββββββββͺββββββββββββββββββββββββͺββββββββββββ‘
β 0 β conv1 (Conv2d) β (None, 1, 32, 26, 26) β 320 β
ββββββΌβββββββββββββββββββββΌββββββββββββββββββββββββΌββββββββββββ€
β 1 β conv2 (Conv2d) β (None, 1, 64, 24, 24) β 18,496 β
ββββββΌβββββββββββββββββββββΌββββββββββββββββββββββββΌββββββββββββ€
β 2 β dropout1 (Dropout) β (None, 1, 64, 12, 12) β 0 β
ββββββΌβββββββββββββββββββββΌββββββββββββββββββββββββΌββββββββββββ€
β 3 β fc1 (Linear) β (None, 1, 128) β 1,179,776 β
ββββββΌβββββββββββββββββββββΌββββββββββββββββββββββββΌββββββββββββ€
β 4 β dropout2 (Dropout) β (None, 1, 128) β 0 β
ββββββΌβββββββββββββββββββββΌββββββββββββββββββββββββΌββββββββββββ€
β 5 β fc2 (Linear) β (None, 1, 10) β 1,290 β
ββββββ§βββββββββββββββββββββ§ββββββββββββββββββββββββ§ββββββββββββ
Total params: 1,199,882
Trainable params: 1,181,386
Non-trainable params: 18,496