Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
61 changes: 61 additions & 0 deletions tensorrt_llm/serve/scripts/benchmark_dataset.py
Original file line number Diff line number Diff line change
Expand Up @@ -319,6 +319,67 @@ def sample(
return requests


# -----------------------------------------------------------------------------
# Custom Dataset Implementation
# -----------------------------------------------------------------------------


class CustomDataset(BenchmarkDataset):
"""
TensorRT-LLM customized dataset implementation.
It assumes the dataset to be consist of several lines of json, each line is a minimal OpenAI API format request.
Example format of each sample on each line:
{
"input": {
"messages": [
{
"role": "system",
"content": ""
},
{
"role": "user",
"content": ""
}
],
"max_tokens": 2048,
}
}
"""

def __init__(self, dataset_path: str, **kwargs) -> None:
super().__init__(**kwargs)
self.dataset_path = dataset_path
self.data = []
self.load_data()

def load_data(self) -> None:
if self.dataset_path is None:
raise ValueError("--dataset-path is not provided")
with open(self.dataset_path, encoding="utf-8") as f:
for line in f:
self.data.append(json.loads(line))
random.seed(self.random_seed)
random.shuffle(self.data)

def sample(self, tokenizer: PreTrainedTokenizerBase,
num_requests: int) -> list[SampleRequest]:
samples: list = []
for entry in self.data:
if len(samples) >= num_requests:
break
prompt = entry["input"]["messages"][1]["content"]
prompt_ids = tokenizer(prompt).input_ids
prompt_len = len(prompt_ids)
max_tokens = entry["input"]["max_tokens"]
samples.append(
SampleRequest(
prompt=prompt,
prompt_len=prompt_len,
expected_output_len=max_tokens,
))
return samples


# -----------------------------------------------------------------------------
# ShareGPT Dataset Implementation
# -----------------------------------------------------------------------------
Expand Down
19 changes: 14 additions & 5 deletions tensorrt_llm/serve/scripts/benchmark_serving.py
Original file line number Diff line number Diff line change
Expand Up @@ -38,10 +38,10 @@
OPENAI_COMPATIBLE_BACKENDS, RequestFuncInput,
RequestFuncOutput, get_tokenizer)
from .benchmark_dataset import (AIMODataset, BurstGPTDataset,
ConversationDataset, HuggingFaceDataset,
InstructCoderDataset, RandomDataset,
SampleRequest, ShareGPTDataset, SonnetDataset,
VisionArenaDataset)
ConversationDataset, CustomDataset,
HuggingFaceDataset, InstructCoderDataset,
RandomDataset, SampleRequest, ShareGPTDataset,
SonnetDataset, VisionArenaDataset)
from .benchmark_utils import convert_to_pytorch_benchmark_format, write_to_json

MILLISECONDS_TO_SECONDS_CONVERSION = 1000
Expand Down Expand Up @@ -613,6 +613,13 @@ def main(args: argparse.Namespace):
output_len=args.hf_output_len,
)

elif args.dataset_name == "trtllm_custom":
input_requests = CustomDataset(dataset_path=args.dataset_path,
random_seed=args.seed).sample(
num_requests=args.num_prompts,
tokenizer=tokenizer,
)

else:
# For datasets that follow a similar structure, use a mapping.
dataset_mapping = {
Expand Down Expand Up @@ -783,7 +790,9 @@ def main(args: argparse.Namespace):
"--dataset-name",
type=str,
default="sharegpt",
choices=["sharegpt", "burstgpt", "sonnet", "random", "hf"],
choices=[
"sharegpt", "burstgpt", "sonnet", "random", "hf", "trtllm_custom"
],
help="Name of the dataset to benchmark on.",
)
parser.add_argument("--dataset-path",
Expand Down