Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
184 changes: 184 additions & 0 deletions tests/integration/defs/perf/README_release_test.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,184 @@
# TensorRT-LLM Performance Test Flow (Default PyTorch Flow)

## Overview
This document describes the complete TensorRT-LLM performance testing workflow, particularly for the default PyTorch backend testing process for release testing.

## 1. Test Scripts

### Main Test Script
The main script for TensorRT-LLM performance testing is `test_perf.py`, which is responsible for executing all performance test cases.

### Performance Metrics
For trtllm-bench, the test extracts the following key performance metrics from logs:

- **BUILD_TIME**: Model build time
- **INFERENCE_TIME**: Inference time
- **TOKEN_THROUGHPUT**: Token throughput
- **SEQ_THROUGHPUT**: Sequence throughput
- **FIRST_TOKEN_TIME**: First token generation time
- **OUTPUT_TOKEN_TIME**: Output token time

## 2. Detailed Test Flow

### 2.1 Dataset Preparation

#### Without LoRA
```python
prepare_data_script = os.path.join(self._llm_root, "benchmarks", "cpp", "prepare_dataset.py")
data_cmd += [
"python3", prepare_data_script, "--stdout",
f"--tokenizer={tokenizer_dir}", f"token-norm-dist",
f"--num-requests={self._config.num_reqs}",
f"--input-mean={input_len}", f"--output-mean={output_len}",
f"--input-stdev={istdev}", f"--output-stdev={ostdev}",
f" > {dataset_path}"
]
```

#### With LoRA
```python
"python3", prepare_data_script, f"--stdout",
f"--rand-task-id 0 {nloras-1}",
f"--tokenizer={tokenizer_dir}", f"--lora-dir={lora_dir}",
f"token-norm-dist",
f"--num-requests={self._config.num_reqs}",
f"--input-mean={input_len}", f"--output-mean={output_len}",
f"--input-stdev={istdev}", f"--output-stdev={ostdev}",
f" > {dataset_path}"
```

### 2.2 PyTorch Configuration Generation
In `pytorch_model_config.py`, we override PyTorch configurations for certain specific cases and generate YAML configuration files.

### 2.3 Calling trtllm-bench for Throughput Testing

#### Basic Command
```python
benchmark_cmd = [
self._benchmark_script,
f"--model={model_name}",
f"--model_path={model_dir}",
"throughput",
f"--dataset={dataset_path}",
f"--max_batch_size={self._config.max_batch_size}",
f"--max_num_tokens={self._config.max_num_tokens}",
f"--report_json={report_path}",
]
```

#### Backend Selection
```python
if self._config.backend != "pytorch":
benchmark_cmd += [
f"--backend=tensorrt", f"--engine_dir={engine_dir}"
]
else:
benchmark_cmd += ["--backend=pytorch"]
```

#### Optional Parameter Configuration
```python
if self._config.num_reqs > 0:
benchmark_cmd += [f"--num_requests={self._config.num_reqs}"]
if self._config.concurrency != -1:
benchmark_cmd += [f"--concurrency={self._config.concurrency}"]
if self._config.ep_size != None:
benchmark_cmd += [f"--ep={self._config.ep_size}"]
if self._config.tp_size > 1:
benchmark_cmd += [f"--tp={self._config.tp_size}"]
if self._config.pp_size > 1:
benchmark_cmd += [f"--pp={self._config.pp_size}"]
if self._config.streaming == "streaming":
benchmark_cmd += [f"--streaming"]
```

#### PyTorch Default Configuration
```python
# Use default YAML configuration
if self._config.backend == "pytorch":
import yaml
config = get_model_yaml_config(self._config.to_string(),
lora_dirs=self.lora_dirs)
print_info(f"pytorch model config: {config}")
with open('extra-llm-api-config.yml', 'w') as f:
yaml.dump(config, f, default_flow_style=False)
benchmark_cmd += [
f"--extra_llm_api_options=extra-llm-api-config.yml"
]
```

## 3. Test Scheduling

### 3.1 Full Test Cycles

1. **trt_llm_release_perf_test.yml** - Release performance test
2. **trt_llm_perf_cluster_test.yml** - Cluster performance test

### 3.2 Sanity Test Cycles

- **trt_llm_release_perf_sanity.yml** - Release performance sanity test

## 4. Test Configuration Description

### 4.1 Test Case Configuration
- Test cases are defined in YAML configuration files
- Support for different models, precisions, batch sizes, etc.
- Support for LoRA and standard model testing

### 4.2 Performance Baseline
- Compare regression of each release on internal TRT-Perf dashboard

### 4.3 Result Analysis
- Generates detailed performance reports
- Supports performance trend analysis
- View performance data and compare between different runs on internal TRT-Perf dashboard

## 5. Runtime Environment Requirements

### 5.1 Dependency Installation
```bash
pip install -r ./TensorRT-LLM/requirements.txt
pip install -r ./TensorRT-LLM/requirements-dev.txt
```

### 5.2 Hardware Requirements
- CUDA-capable GPU
- Sufficient GPU memory for model loading
- Recommended to use B200/GB200 or higher performance GPU for cluster testing

## 6. Reproduce Steps

To reproduce the performance tests locally, follow these steps:

### 6.1 Install Dependencies
```bash
pip install -r requirements-dev.txt
pip install -r requirements.txt
```

### 6.2 Navigate to Test Directory
```bash
cd tests/integration/defs
```

### 6.3 Add Test Case to Test List
```bash
echo "perf/test_perf.py::test_perf[llama_v3.3_70b_instruct_fp8-bench-pytorch-float8-input_output_len:128,128]" >> perf_test.txt
```

### 6.4 Run Performance Test
```bash
pytest -v -s --test-prefix=H100_80GB_HBM3 --test-list=perf_test.txt -R=llama_v3.3_70b_instruct_fp8-bench-pytorch-float8-input_output_len:128,128 --output-dir=./output --perf --perf-log-formats=csv -o junit_logging=out-err
```

### 6.5 Command Parameters Explanation
- `--test-prefix=H100_80GB_HBM3`: Specifies the test environment prefix
- `--test-list`: Points to the test list file containing test cases
- `-R`: Filter for specific test patterns
- `--output-dir=./output`: Specifies the output directory for test results
- `--perf`: Enables performance testing mode
- `--perf-log-formats=csv`: Outputs performance logs in CSV format
- `-o junit_logging=out-err`: Configures JUnit logging output

## 7. Related Documentation
- [Sanity Perf Check Introduction](README.md)
23 changes: 11 additions & 12 deletions tests/integration/defs/perf/test_perf.py
Original file line number Diff line number Diff line change
Expand Up @@ -374,12 +374,12 @@ def __init__(
num_reqs: int = 512,
concurrency: int = -1,
quantization: str = "",
kv_cache_free_gpu_mem_fraction: float = 0.9,
kv_cache_dtype: str = "auto",
ep_size: int = None,
tp_size: int = 1,
pp_size: int = 1,
num_gpus: int = 1,
kv_cache_free_gpu_mem_fraction: float = 0.9,
):
# The model name.
self.model_name = model_name
Expand Down Expand Up @@ -419,6 +419,8 @@ def __init__(
self.concurrency = concurrency
# Quantization type.
self.quantization = quantization
# KV cache free gpu mem fraction
self.kv_cache_free_gpu_mem_fraction = kv_cache_free_gpu_mem_fraction
# KV Cache dtype
self.kv_cache_dtype = kv_cache_dtype
# Multiple Profiles
Expand All @@ -433,8 +435,6 @@ def __init__(
self.num_gpus = num_gpus
# Just build engines
self.build_only = False
# kv cache free gpu mem fraction
self.kv_cache_free_gpu_mem_fraction = kv_cache_free_gpu_mem_fraction

def to_string(self,
custom_bs: int = None,
Expand Down Expand Up @@ -478,6 +478,10 @@ def to_string(self,
# Add Max number of tokens.
entries.append(f"maxnt:{self.max_num_tokens}")

# Add kv cache free gpu mem fraction.
if self.kv_cache_free_gpu_mem_fraction != 0.9:
entries.append(f"kv_frac:{self.kv_cache_free_gpu_mem_fraction}")

if self.build_only:
entries.append(f"build_only")

Expand Down Expand Up @@ -548,10 +552,6 @@ def to_string(self,
if self.num_gpus > 1:
entries.append(f"gpus:{self.num_gpus}")

# Add kv cache free gpu mem fraction.
if self.kv_cache_free_gpu_mem_fraction != 0.9:
entries.append(f"kv_frac:{self.kv_cache_free_gpu_mem_fraction}")

# Concatenate labels with "-".
return "-".join(entries)

Expand Down Expand Up @@ -591,6 +591,10 @@ def load_from_str(self, test_param_labels) -> None:
if labels[0].startswith("maxnt"):
self.max_num_tokens = int(labels.pop(0).replace("maxnt:", ""))

if labels[0].startswith("kv_frac"):
self.kv_cache_free_gpu_mem_fraction = float(
labels.pop(0).replace("kv_frac:", ""))

if labels[0] == "build_only":
self.build_only = True
labels.pop(0)
Expand Down Expand Up @@ -659,11 +663,6 @@ def load_from_str(self, test_param_labels) -> None:
self.num_gpus = 1 if not labels[0].startswith("gpus:") else int(
labels.pop(0).replace("gpus:", ""))

if len(labels) > 0:
self.kv_cache_free_gpu_mem_fraction = 0.9 if not labels[
0].startswith("kv_frac:") else float(
labels.pop(0).replace("kv_frac:", ""))

assert len(
labels
) == 0, f"Invalid test name! Some labels cannot be parsed: {labels}"
Expand Down
22 changes: 11 additions & 11 deletions tests/integration/test_lists/qa/trt_llm_release_perf_test.yml
Original file line number Diff line number Diff line change
Expand Up @@ -473,21 +473,21 @@ trt_llm_release_perf_test:

#llama_v4_maverick_17b_128e_instruct_fp8
#pytorch backend
- perf/test_perf.py::test_perf[llama_v4_maverick_17b_128e_instruct_fp8-bench-pytorch-float8-maxbs:1024-maxnt:4096-input_output_len:2000,500-reqs:3000-ep:8-tp:8-gpus:8-kv_frac:0.6]
- perf/test_perf.py::test_perf[llama_v4_maverick_17b_128e_instruct_fp8-bench-pytorch-float8-maxbs:1024-maxnt:4096-input_output_len:500,2000-reqs:3000-ep:8-tp:8-gpus:8-kv_frac:0.6]
- perf/test_perf.py::test_perf[llama_v4_maverick_17b_128e_instruct_fp8-bench-pytorch-float8-maxbs:1024-maxnt:4096-input_output_len:1000,1000-reqs:3000-ep:8-tp:8-gpus:8-kv_frac:0.6]
- perf/test_perf.py::test_perf[llama_v4_maverick_17b_128e_instruct_fp8-bench-pytorch-float8-input_output_len:128,128-ep:8-tp:8-gpus:8-kv_frac:0.6]
- perf/test_perf.py::test_perf[llama_v4_maverick_17b_128e_instruct_fp8-bench-pytorch-float8-input_output_len:512,32-ep:8-tp:8-gpus:8-kv_frac:0.6]
- perf/test_perf.py::test_perf[llama_v4_maverick_17b_128e_instruct_fp8-bench-pytorch-float8-maxbs:1024-maxnt:4096-kv_frac:0.6-input_output_len:2000,500-reqs:3000-ep:8-tp:8-gpus:8]
- perf/test_perf.py::test_perf[llama_v4_maverick_17b_128e_instruct_fp8-bench-pytorch-float8-maxbs:1024-maxnt:4096-kv_frac:0.6-input_output_len:500,2000-reqs:3000-ep:8-tp:8-gpus:8]
- perf/test_perf.py::test_perf[llama_v4_maverick_17b_128e_instruct_fp8-bench-pytorch-float8-maxbs:1024-maxnt:4096-kv_frac:0.6-input_output_len:1000,1000-reqs:3000-ep:8-tp:8-gpus:8]
- perf/test_perf.py::test_perf[llama_v4_maverick_17b_128e_instruct_fp8-bench-pytorch-float8-kv_frac:0.6-input_output_len:128,128-ep:8-tp:8-gpus:8]
- perf/test_perf.py::test_perf[llama_v4_maverick_17b_128e_instruct_fp8-bench-pytorch-float8-kv_frac:0.6-input_output_len:512,32-ep:8-tp:8-gpus:8]
#rcca case
- perf/test_perf.py::test_perf[llama_v4_maverick_17b_128e_instruct_fp8-bench-pytorch-float8-input_output_len:20000,2000-reqs:1000-ep:8-tp:8-gpus:8-kv_frac:0.6]
- perf/test_perf.py::test_perf[llama_v4_maverick_17b_128e_instruct_fp8-bench-pytorch-float8-kv_frac:0.6-input_output_len:20000,2000-reqs:1000-ep:8-tp:8-gpus:8]

#llama_v4_scout_17b_16e_instruct_fp8
#pytorch backend
- perf/test_perf.py::test_perf[llama_v4_scout_17b_16e_instruct_fp8-bench-pytorch-float8-maxbs:1024-maxnt:4096-input_output_len:2000,500-reqs:3000-ep:8-tp:8-gpus:8-kv_frac:0.6]
- perf/test_perf.py::test_perf[llama_v4_scout_17b_16e_instruct_fp8-bench-pytorch-float8-maxbs:1024-maxnt:4096-input_output_len:500,2000-reqs:3000-ep:8-tp:8-gpus:8-kv_frac:0.6]
- perf/test_perf.py::test_perf[llama_v4_scout_17b_16e_instruct_fp8-bench-pytorch-float8-maxbs:1024-maxnt:4096-input_output_len:1000,1000-reqs:3000-ep:8-tp:8-gpus:8-kv_frac:0.6]
- perf/test_perf.py::test_perf[llama_v4_scout_17b_16e_instruct_fp8-bench-pytorch-float8-input_output_len:128,128-ep:8-tp:8-gpus:8-kv_frac:0.6]
- perf/test_perf.py::test_perf[llama_v4_scout_17b_16e_instruct_fp8-bench-pytorch-float8-input_output_len:512,32-ep:8-tp:8-gpus:8-kv_frac:0.6]
- perf/test_perf.py::test_perf[llama_v4_scout_17b_16e_instruct_fp8-bench-pytorch-float8-maxbs:1024-maxnt:4096-kv_frac:0.6-input_output_len:2000,500-reqs:3000-ep:8-tp:8-gpus:8]
- perf/test_perf.py::test_perf[llama_v4_scout_17b_16e_instruct_fp8-bench-pytorch-float8-maxbs:1024-maxnt:4096-kv_frac:0.6-input_output_len:500,2000-reqs:3000-ep:8-tp:8-gpus:8]
- perf/test_perf.py::test_perf[llama_v4_scout_17b_16e_instruct_fp8-bench-pytorch-float8-maxbs:1024-maxnt:4096-kv_frac:0.6-input_output_len:1000,1000-reqs:3000-ep:8-tp:8-gpus:8]
- perf/test_perf.py::test_perf[llama_v4_scout_17b_16e_instruct_fp8-bench-pytorch-float8-kv_frac:0.6-input_output_len:128,128-ep:8-tp:8-gpus:8]
- perf/test_perf.py::test_perf[llama_v4_scout_17b_16e_instruct_fp8-bench-pytorch-float8-kv_frac:0.6-input_output_len:512,32-ep:8-tp:8-gpus:8]

#deepseek_r1_fp8
#pytorch backend
Expand Down
Loading