Skip to content

OneAndZero24/local-cl

Repository files navigation

Local Continual Learning

logo

Patryk Krukowski, Jan Miksa @ GMUM JU

🚀 Let's forget about catastrophic forgetting! 🚀

rbf

Work in progress... There may be bugs and features might be missing.

Features

  • Hydra Configuration
  • WANDB Logging
  • Lightning Fabric
  • Custom Plugin System for Methods
  • Incremental Classifier
  • Ability to use any torchvision model as pretrained backbone
Method Status Custom Layers Status Model Status Scenario Status Dataset Status
Naive Local MLP CI MNIST
LwF RBF LeNet DI ImageNet
EWC SingleRBFHead Big Backbone TI CIFAR100
Sharpening MultiRBFHead DenseNet II TinyImageNet
SI KAN Permuted ⭕️ SVHN
MAS LocalHead ⭕️ CIFAR-10
RBFReg LocalConv2D ⭕️ FMNIST
Dreaming IntervalActivation
Dynamic Loss Scaling
Interval Penalization

Commands

Setup

conda create -n "lcl" python=3.9
pip install -r requirements.txt
cp example.env .env
edit .env

Launching Experiments

conda activate lcl
WANDB_MODE={offline/online} HYDRA_FULL_ERROR={0/1} python src/main.py --config-name config 

Diagrams

classes

packages

Acknowledgements

  • Project Structure based on template by Bartłomiej Sobieski
  • PyTorchRBFLayer repo by Alessio Russo

About

Continual Learning with Local Neural Layers

Topics

Resources

License

Stars

Watchers

Forks

Contributors 5

Languages