Skip to content
Merged
Show file tree
Hide file tree
Changes from 4 commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
8 changes: 8 additions & 0 deletions docs/api/paddle/vision/Overview_cn.rst
Original file line number Diff line number Diff line change
Expand Up @@ -71,6 +71,14 @@ paddle.vision 目录是飞桨在视觉领域的高层API。具体如下:
" :ref:`inception_v3 <cn_api_paddle_vision_models_inception_v3>` ", "InceptionV3模型"
" :ref:`GoogLeNet <cn_api_paddle_vision_models_GoogLeNet>` ", "GoogLeNet模型"
" :ref:`googlenet <cn_api_paddle_vision_models_googlenet>` ", "GoogLeNet模型"
" :ref:`ShuffleNetV2 <cn_api_paddle_vision_models_ShuffleNetV2>` ", "ShuffleNetV2模型"
" :ref:`shufflenet_v2_x0_25 <cn_api_paddle_vision_models_shufflenet_v2_x0_25>` ", "输出通道缩放比例为 0.25 的 ShuffleNetV2 模型"
" :ref:`shufflenet_v2_x0_33 <cn_api_paddle_vision_models_shufflenet_v2_x0_33>` ", "输出通道缩放比例为 0.33 的 ShuffleNetV2 模型"
" :ref:`shufflenet_v2_x0_5 <cn_api_paddle_vision_models_shufflenet_v2_x0_5>` ", "输出通道缩放比例为 0.5 的 ShuffleNetV2 模型"
" :ref:`shufflenet_v2_x1_0 <cn_api_paddle_vision_models_shufflenet_v2_x1_0>` ", "输出通道缩放比例为 1.0 的 ShuffleNetV2 模型"
" :ref:`shufflenet_v2_x1_5 <cn_api_paddle_vision_models_shufflenet_v2_x1_5>` ", "输出通道缩放比例为 1.5 的 ShuffleNetV2 模型"
" :ref:`shufflenet_v2_x2_0 <cn_api_paddle_vision_models_shufflenet_v2_x2_0>` ", "输出通道缩放比例为 2.0 的 ShuffleNetV2 模型"
" :ref:`shufflenet_v2_swish <cn_api_paddle_vision_models_shufflenet_v2_swish>` ", "使用 swish 进行激活的 ShuffleNetV2 模型"


.. _about_ops:
Expand Down
33 changes: 33 additions & 0 deletions docs/api/paddle/vision/models/ShuffleNetV2_cn.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,33 @@
.. _cn_api_paddle_vision_models_ShuffleNetV2:

ShuffleNetV2
-------------------------------

.. py:class:: paddle.vision.models.ShuffleNetV2(scale=1.0, act="relu", num_classes=1000, with_pool=True)

ShuffleNetV2模型,来自论文 `"ShuffleNet V2: Practical Guidelines for Efficient CNN Architecture Design" <https://arxiv.org/pdf/1807.11164.pdf>`_ 。

参数
:::::::::
- **scale** (float,可选) - 模型通道数的缩放比例。默认值:1.0。
- **act** (str, 可选) - 网络中使用的激活函数。默认值:"relu"。
- **num_classes** (int, 可选) - 最后一个全连接层输出的维度。如果该值小于0,则不定义最后一个全连接层。默认值:1000。
- **with_pool** (bool,可选) - 是否定义最后一个全连接层之前的池化层。默认值:True。

返回
:::::::::
ShuffleNetV2模型,Layer的实例。

代码示例
:::::::::
.. code-block:: python

import paddle
from paddle.vision.models import ShuffleNetV2

shufflenet_v2_swish = ShuffleNetV2(scale=1.0, act="swish")

x = paddle.rand([1, 3, 224, 224])
out = shufflenet_v2_swish(x)

print(out.shape)
34 changes: 34 additions & 0 deletions docs/api/paddle/vision/models/shufflenet_v2_swish_cn.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
.. _cn_api_paddle_vision_models_shufflenet_v2_swish:

shufflenet_v2_swish
-------------------------------

.. py:function:: paddle.vision.models.shufflenet_v2_swish(pretrained=False, **kwargs)

使用 swish 进行激活的 ShuffleNetV2 模型,来自论文 `"ShuffleNet V2: Practical Guidelines for Ecient CNN Architecture Design" <https://arxiv.org/pdf/1807.11164.pdf>`_ 。

参数
:::::::::
- **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。

返回
:::::::::
shufflenet_v2_swish模型,Layer的实例。

代码示例
:::::::::
.. code-block:: python

import paddle
from paddle.vision.models import shufflenet_v2_swish

# build model
model = shufflenet_v2_swish()

# build model and load imagenet pretrained weight
# model = shufflenet_v2_swish(pretrained=True)

x = paddle.rand([1, 3, 224, 224])
out = model(x)

print(out.shape)
34 changes: 34 additions & 0 deletions docs/api/paddle/vision/models/shufflenet_v2_x0_25_cn.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
.. _cn_api_paddle_vision_models_shufflenet_v2_x0_25:

shufflenet_v2_x0_25
-------------------------------

.. py:function:: paddle.vision.models.shufflenet_v2_x0_25(pretrained=False, **kwargs)

输出通道缩放比例为 0.25 的 ShuffleNetV2 模型,来自论文 `"ShuffleNet V2: Practical Guidelines for Ecient CNN Architecture Design" <https://arxiv.org/pdf/1807.11164.pdf>`_ 。

参数
:::::::::
- **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。

返回
:::::::::
shufflenet_v2_x0_25模型,Layer的实例。

代码示例
:::::::::
.. code-block:: python

import paddle
from paddle.vision.models import shufflenet_v2_x0_25

# build model
model = shufflenet_v2_x0_25()

# build model and load imagenet pretrained weight
# model = shufflenet_v2_x0_25(pretrained=True)

x = paddle.rand([1, 3, 224, 224])
out = model(x)

print(out.shape)
34 changes: 34 additions & 0 deletions docs/api/paddle/vision/models/shufflenet_v2_x0_33_cn.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
.. _cn_api_paddle_vision_models_shufflenet_v2_x0_33:

shufflenet_v2_x0_33
-------------------------------

.. py:function:: paddle.vision.models.shufflenet_v2_x0_33(pretrained=False, **kwargs)

输出通道缩放比例为 0.25 的 ShuffleNetV2 模型,来自论文 `"ShuffleNet V2: Practical Guidelines for Ecient CNN Architecture Design" <https://arxiv.org/pdf/1807.11164.pdf>`_ 。

参数
:::::::::
- **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。

返回
:::::::::
shufflenet_v2_x0_33模型,Layer的实例。

代码示例
:::::::::
.. code-block:: python

import paddle
from paddle.vision.models import shufflenet_v2_x0_33

# build model
model = shufflenet_v2_x0_33()

# build model and load imagenet pretrained weight
# model = shufflenet_v2_x0_33(pretrained=True)

x = paddle.rand([1, 3, 224, 224])
out = model(x)

print(out.shape)
34 changes: 34 additions & 0 deletions docs/api/paddle/vision/models/shufflenet_v2_x0_5_cn.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
.. _cn_api_paddle_vision_models_shufflenet_v2_x0_5:

shufflenet_v2_x0_5
-------------------------------

.. py:function:: paddle.vision.models.shufflenet_v2_x0_5(pretrained=False, **kwargs)

输出通道缩放比例为 0.5 的 ShuffleNetV2 模型,来自论文 `"ShuffleNet V2: Practical Guidelines for Ecient CNN Architecture Design" <https://arxiv.org/pdf/1807.11164.pdf>`_ 。

参数
:::::::::
- **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。

返回
:::::::::
shufflenet_v2_x0_5模型,Layer的实例。

代码示例
:::::::::
.. code-block:: python

import paddle
from paddle.vision.models import shufflenet_v2_x0_5

# build model
model = shufflenet_v2_x0_5()

# build model and load imagenet pretrained weight
# model = shufflenet_v2_x0_5(pretrained=True)

x = paddle.rand([1, 3, 224, 224])
out = model(x)

print(out.shape)
34 changes: 34 additions & 0 deletions docs/api/paddle/vision/models/shufflenet_v2_x1_0_cn.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
.. _cn_api_paddle_vision_models_shufflenet_v2_x1_0:

shufflenet_v2_x1_0
-------------------------------

.. py:function:: paddle.vision.models.shufflenet_v2_x1_0(pretrained=False, **kwargs)

输出通道缩放比例为 1.0 的 ShuffleNetV2 模型,来自论文 `"ShuffleNet V2: Practical Guidelines for Ecient CNN Architecture Design" <https://arxiv.org/pdf/1807.11164.pdf>`_ 。

参数
:::::::::
- **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。

返回
:::::::::
shufflenet_v2_x1_0模型,Layer的实例。

代码示例
:::::::::
.. code-block:: python

import paddle
from paddle.vision.models import shufflenet_v2_x1_0

# build model
model = shufflenet_v2_x1_0()

# build model and load imagenet pretrained weight
# model = shufflenet_v2_x1_0(pretrained=True)

x = paddle.rand([1, 3, 224, 224])
out = model(x)

print(out.shape)
34 changes: 34 additions & 0 deletions docs/api/paddle/vision/models/shufflenet_v2_x1_5_cn.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
.. _cn_api_paddle_vision_models_shufflenet_v2_x1_5:

shufflenet_v2_x1_5
-------------------------------

.. py:function:: paddle.vision.models.shufflenet_v2_x1_5(pretrained=False, **kwargs)

输出通道缩放比例为 1.5 的 ShuffleNetV2 模型,来自论文 `"ShuffleNet V2: Practical Guidelines for Ecient CNN Architecture Design" <https://arxiv.org/pdf/1807.11164.pdf>`_ 。

参数
:::::::::
- **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。

返回
:::::::::
shufflenet_v2_x1_5模型,Layer的实例。

代码示例
:::::::::
.. code-block:: python

import paddle
from paddle.vision.models import shufflenet_v2_x1_5

# build model
model = shufflenet_v2_x1_5()

# build model and load imagenet pretrained weight
# model = shufflenet_v2_x1_5(pretrained=True)

x = paddle.rand([1, 3, 224, 224])
out = model(x)

print(out.shape)
34 changes: 34 additions & 0 deletions docs/api/paddle/vision/models/shufflenet_v2_x2_0_cn.rst
Original file line number Diff line number Diff line change
@@ -0,0 +1,34 @@
.. _cn_api_paddle_vision_models_shufflenet_v2_x2_0:

shufflenet_v2_x2_0
-------------------------------

.. py:function:: paddle.vision.models.shufflenet_v2_x2_0(pretrained=False, **kwargs)

输出通道缩放比例为 2.0 的 ShuffleNetV2 模型,来自论文 `"ShuffleNet V2: Practical Guidelines for Ecient CNN Architecture Design" <https://arxiv.org/pdf/1807.11164.pdf>`_ 。

参数
:::::::::
- **pretrained** (bool,可选) - 是否加载在imagenet数据集上的预训练权重。默认值:False。

返回
:::::::::
shufflenet_v2_x2_0模型,Layer的实例。

代码示例
:::::::::
.. code-block:: python

import paddle
from paddle.vision.models import shufflenet_v2_x2_0

# build model
model = shufflenet_v2_x2_0()

# build model and load imagenet pretrained weight
# model = shufflenet_v2_x2_0(pretrained=True)

x = paddle.rand([1, 3, 224, 224])
out = model(x)

print(out.shape)