Skip to content

Techtonique/cybooster

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

42 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

CyBooster: A Gradient Boosting Library

PyPI - License Downloads

CyBooster is a high-performance generic gradient boosting (any based learner can be used) library designed for classification and regression tasks. It is built on Cython (that is, C) for speed and efficiency. This version will also be more GPU friendly, thanks to JAX, making it suitable for large datasets.

Each base learner is augmented with a randomized neural network (a generalization of https://www.researchgate.net/publication/346059361_LSBoost_gradient_boosted_penalized_nonlinear_least_squares to any base learner), which allows the model to learn complex patterns in the data. The library supports both classification and regression tasks, making it versatile for various machine learning applications.

CyBooster is born from mlsauce, that might be difficult to install on some systems.

Installation

To install CyBooster, you can use pip or uv (faster):

pip install cybooster --verbose

or

uv pip install cybooster --verbose

From GitHub:

pip install git+https://github.com/Techtonique/cybooster.git --verbose

Usage

from cybooster import BoosterClassifier, BoosterRegressor
from sklearn.datasets import load_iris, load_diabetes, load_breast_cancer, load_digits, load_wine
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score, mean_squared_error, root_mean_squared_error
from sklearn.linear_model import LinearRegression
from time import time 


# Regression Example
X, y = load_diabetes(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
regressor = BoosterRegressor(obj=LinearRegression(), n_estimators=100, learning_rate=0.1,
                             n_hidden_features=10, verbose=1, seed=42)
start = time()
regressor.fit(X_train, y_train)
y_pred = regressor.predict(X_test)
print(f"Elapsed: {time() - start} s")
rmse = root_mean_squared_error(y_test, y_pred)
print(f"RMSE for regression: {rmse:.4f}")

# Classification Example
X, y = load_iris(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
classifier = BoosterClassifier(obj=LinearRegression(), n_estimators=100, learning_rate=0.1,
                               n_hidden_features=10, verbose=1, seed=42)
start = time()
try: 
    classifier.fit(X_train, y_train)
except Exception as e: # this is for Windows users
    y_train = y_train.astype('int32')
    classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
print(f"Elapsed: {time() - start} s")
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy for classification: {accuracy:.4f}")

X, y = load_wine(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
classifier = BoosterClassifier(obj=LinearRegression(), n_estimators=100, learning_rate=0.1,
                               n_hidden_features=10, verbose=1, seed=42)
start = time()
try:
    classifier.fit(X_train, y_train)
except Exception as e: # this is for Windows users
    y_train = y_train.astype('int32')
    classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
print(f"Elapsed: {time() - start} s")
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy for classification: {accuracy:.4f}")

X, y = load_breast_cancer(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
classifier = BoosterClassifier(obj=LinearRegression(), n_estimators=100, learning_rate=0.1,
                               n_hidden_features=10, verbose=1, seed=42)
start = time()
try: 
    classifier.fit(X_train, y_train)
except Exception as e: # this is for Windows users
    y_train = y_train.astype('int32')
    classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
print(f"Elapsed: {time() - start} s")
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy for classification: {accuracy:.4f}")

X, y = load_digits(return_X_y=True)
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
classifier = BoosterClassifier(obj=LinearRegression(), n_estimators=100, learning_rate=0.1,
                               n_hidden_features=10, verbose=1, seed=42)
start = time()
try: 
    classifier.fit(X_train, y_train)
except Exception as e: # this is for Windows users
    y_train = y_train.astype('int32')
    classifier.fit(X_train, y_train)
y_pred = classifier.predict(X_test)
print(f"Elapsed: {time() - start} s")
accuracy = accuracy_score(y_test, y_pred)
print(f"Accuracy for classification: {accuracy:.4f}")

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Sponsor this project

 

Packages

No packages published