Skip to content

VForiel/Tunable-Kernel-Nulling

Repository files navigation

Tunable Kernel-Nulling for Direct Exoplanet Detection

Python

📜 Abstract

This project focuses on the development and optimization of a tunable Kernel-Nulling interferometer for direct detection of exoplanets. The work combines numerical simulations, calibration algorithms, and statistical analysis techniques to achieve high-contrast detection capabilities using a four-telescope architecture with integrated photonic components.

🎯 Objectives

  • Direct exoplanet detection with contrasts beyond 10⁻⁸
  • Phase aberration correction using active photonic components with 14 electro-optic phase shifters
  • Performance optimization through advanced calibration algorithms
  • Statistical analysis of kernel-null depth distributions

🚀 Getting Started

Prerequisites

  • Python 3.11 or higher
  • PDM (Python Dependency Manager)

Key Dependencies

  • numpy - Numerical computations
  • astropy - Astronomical units and calculations
  • matplotlib - Plotting and visualization
  • scipy - Scientific computing
  • numba - High-performance numerical functions
  • ipywidgets - Interactive widgets for Jupyter notebooks

Installation

  1. Clone the repository:
git clone https://github.com/your-username/Tunable-Kernel-Nulling.git
cd Tunable-Kernel-Nulling
  1. Install project dependencies (using PDM):
pdm install

Thes open the main simulation notebook "numerical_simulation.ipynb" and select the appropriate kernel for your environment.

🔬 Scientific Approach

Architecture

The system employs a four-telescope Kernel-Nulling architecture using integrated optical components:

  • 4 Telescopes: Collecting light from target star and potential companions
  • 14 Phase Shifters: Electro-optic elements for phase correction
  • MMI Components: Multi-mode interferometers for signal processing
  • 7 Outputs: 1 bright output + 6 dark outputs → 3 kernel outputs

Key Features

  1. Calibration Algorithms:

    • Genetic algorithm approach
    • Input obstruction method
    • Performance comparison and optimization
  2. Statistical Analysis:

    • ROC curve analysis
    • P-value computation
    • Multiple test statistics (mean, median, Kolmogorov-Smirnov, etc.)
  3. Simulation Scenarios:

    • VLTI: Ground-based, 8m telescopes, 130m baseline, λ=1.55μm
    • LIFE: Space-based, 2m telescopes, 600m baseline, λ=4μm

Applications

  • Direct imaging of exoplanets
  • High-contrast astronomy
  • Interferometric nulling techniques
  • Statistical detection methods

📊 Key Results

  • Achievable contrasts: 10⁻⁵ to 10⁻⁶ (limited by phase perturbations)
  • Robust performance against first-order phase aberrations
  • Statistical tests demonstrate reliable planet detection capabilities
  • Successful calibration algorithms for component optimization

📚 Publications

This work has contributed to several scientific publications:

  1. SPIE Proceedings - "Tunable Kernel-Nulling interferometry for direct exoplanet detection"
  2. A&A Paper (in preparation) - "Tunable Kernel-Nulling for direct detection of exoplanets: 1. Calibration and performance"
  3. Statistical Analysis Paper (in preparation) - "Statistical data analysis techniques for kernel-nulling interferometry"

👥 Contributors

  • Vincent Foriel - PhD Student, Primary Developer
  • David Mary - Supervisor, Statistical Analysis
  • Frantz Martinache - Supervisor, Interferometry Expert
  • Nick Cvetojevic - Photonics Specialist
  • Romain Laugier - Kernel-Nulling Theory
  • Marc-Antoine Martinod - Technical Support
  • Sylvie Robbe-Dubois - Project Coordination
  • Roxanne Ligi - Scientific Advisor

🏢 Affiliations

  • Université Côte d'Azur, Observatoire de la Côte d'Azur Nice
  • CNRS, Laboratoire Lagrange, Nice, France
  • KU Leuven University, Leuven, Belgium

📞 Contact

For questions or collaborations:

About

(PhD) Adaptive tunable kernel-nulling interferometry for the direct detection of extrasolar planets

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published