Skip to content

Monotonicity implies Congruence for Antisymmetric orderings #2812

@jamesmckinna

Description

@jamesmckinna

An IsOrderHomomorphism

record IsOrderHomomorphism (_≈₁_ : Rel A ℓ₁) (_≈₂_ : Rel B ℓ₂)
(_≲₁_ : Rel A ℓ₃) (_≲₂_ : Rel B ℓ₄)
(⟦_⟧ : A B) : Set (a ⊔ ℓ₁ ⊔ ℓ₂ ⊔ ℓ₃ ⊔ ℓ₄)
where
field
cong : Homomorphic₂ _≈₁_ _≈₂_ ⟦_⟧
mono : Homomorphic₂ _≲₁_ _≲₂_ ⟦_⟧
between partial orders is necessarily congruent, by virtue of monotonicity (and antisymmetry on the codomain)?

So: should we have a Relation.Binary.Morphism.Biased.Structures definition to reflect that? How best (eg wrt parametrisation) to define it?

Metadata

Metadata

Assignees

No one assigned

    Labels

    No labels
    No labels

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions