Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
6 changes: 6 additions & 0 deletions CHANGELOG.md
Original file line number Diff line number Diff line change
Expand Up @@ -1595,6 +1595,12 @@ New modules
```
Algebra.Properties.KleeneAlgebra
```

* Relations on indexed sets
```
Function.Indexed.Bundles
```

Other minor changes
-------------------

Expand Down
2 changes: 1 addition & 1 deletion src/Algebra/Definitions.agda
Original file line number Diff line number Diff line change
Expand Up @@ -109,7 +109,7 @@ _DistributesOver_ : Op₂ A → Op₂ A → Set _
* DistributesOver + = (* DistributesOverˡ +) × (* DistributesOverʳ +)

_MiddleFourExchange_ : Op₂ A → Op₂ A → Set _
_*_ MiddleFourExchange _+_ =
_*_ MiddleFourExchange _+_ =
∀ w x y z → ((w + x) * (y + z)) ≈ ((w + y) * (x + z))

_IdempotentOn_ : Op₂ A → A → Set _
Expand Down
50 changes: 50 additions & 0 deletions src/Function/Indexed/Bundles.agda
Original file line number Diff line number Diff line change
@@ -0,0 +1,50 @@
------------------------------------------------------------------------
-- The Agda standard library
--
-- Operations on Relations for Indexed sets
------------------------------------------------------------------------

{-# OPTIONS --cubical-compatible --safe #-}

module Function.Indexed.Bundles where

open import Relation.Unary using (Pred)
open import Function.Bundles using (_⟶_; _↣_; _↠_; _⤖_; _⇔_; _↩_; _↪_; _↩↪_; _↔_)
open import Relation.Binary hiding (_⇔_)
open import Level using (Level)

private
variable
a b ℓ₁ ℓ₂ : Level

------------------------------------------------------------------------
-- Bundles specialised for lifting relations to indexed sets
------------------------------------------------------------------------

infix 3 _⟶ᵢ_ _↣ᵢ_ _↠ᵢ_ _⤖ᵢ_ _⇔ᵢ_ _↩ᵢ_ _↪ᵢ_ _↩↪ᵢ_ _↔ᵢ_
_⟶ᵢ_ : ∀ {i} {I : Set i} → Pred I a → Pred I b → Set _
A ⟶ᵢ B = ∀ {i} → A i ⟶ B i

_↣ᵢ_ : ∀ {i} {I : Set i} → Pred I a → Pred I b → Set _
A ↣ᵢ B = ∀ {i} → A i ↣ B i

_↠ᵢ_ : ∀ {i} {I : Set i} → Pred I a → Pred I b → Set _
A ↠ᵢ B = ∀ {i} → A i ↠ B i

_⤖ᵢ_ : ∀ {i} {I : Set i} → Pred I a → Pred I b → Set _
A ⤖ᵢ B = ∀ {i} → A i ⤖ B i

_⇔ᵢ_ : ∀ {i} {I : Set i} → Pred I a → Pred I b → Set _
A ⇔ᵢ B = ∀ {i} → A i ⇔ B i

_↩ᵢ_ : ∀ {i} {I : Set i} → Pred I a → Pred I b → Set _
A ↩ᵢ B = ∀ {i} → A i ↩ B i

_↪ᵢ_ : ∀ {i} {I : Set i} → Pred I a → Pred I b → Set _
A ↪ᵢ B = ∀ {i} → A i ↪ B i

_↩↪ᵢ_ : ∀ {i} {I : Set i} → Pred I a → Pred I b → Set _
A ↩↪ᵢ B = ∀ {i} → A i ↩↪ B i

_↔ᵢ_ : ∀ {i} {I : Set i} → Pred I a → Pred I b → Set _
A ↔ᵢ B = ∀ {i} → A i ↔ B i