Skip to content
Merged
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
113 changes: 43 additions & 70 deletions datafusion/proto/tests/cases/roundtrip_physical_plan.rs
Original file line number Diff line number Diff line change
Expand Up @@ -41,7 +41,6 @@ use datafusion::arrow::compute::kernels::sort::SortOptions;
use datafusion::arrow::datatypes::{DataType, Field, IntervalUnit, Schema};
use datafusion::datasource::empty::EmptyTable;
use datafusion::datasource::file_format::csv::CsvSink;
use datafusion::datasource::file_format::file_compression_type::FileCompressionType;
use datafusion::datasource::file_format::json::JsonSink;
use datafusion::datasource::file_format::parquet::ParquetSink;
use datafusion::datasource::listing::{ListingTableUrl, PartitionedFile};
Expand Down Expand Up @@ -95,7 +94,7 @@ use datafusion_common::file_options::json_writer::JsonWriterOptions;
use datafusion_common::parsers::CompressionTypeVariant;
use datafusion_common::stats::Precision;
use datafusion_common::{
internal_err, not_impl_err, Constraints, DataFusionError, Result, UnnestOptions,
internal_err, not_impl_err, DataFusionError, Result, UnnestOptions,
};
use datafusion_expr::{
Accumulator, AccumulatorFactoryFunction, AggregateUDF, ColumnarValue, ScalarUDF,
Expand Down Expand Up @@ -738,33 +737,23 @@ fn roundtrip_parquet_exec_with_pruning_predicate() -> Result<()> {
let mut options = TableParquetOptions::new();
options.global.pushdown_filters = true;

let source = Arc::new(
let file_source = Arc::new(
ParquetSource::new(options).with_predicate(Arc::clone(&file_schema), predicate),
);

let scan_config = FileScanConfig {
object_store_url: ObjectStoreUrl::local_filesystem(),
file_schema,
file_groups: vec![vec![PartitionedFile::new(
"/path/to/file.parquet".to_string(),
1024,
)]],
constraints: Constraints::empty(),
statistics: Statistics {
num_rows: Precision::Inexact(100),
total_byte_size: Precision::Inexact(1024),
column_statistics: Statistics::unknown_column(&Arc::new(Schema::new(vec![
Field::new("col", DataType::Utf8, false),
]))),
},
projection: None,
limit: None,
table_partition_cols: vec![],
output_ordering: vec![],
file_compression_type: FileCompressionType::UNCOMPRESSED,
new_lines_in_values: false,
file_source: source,
};
let scan_config =
FileScanConfig::new(ObjectStoreUrl::local_filesystem(), file_schema, file_source)
.with_file_groups(vec![vec![PartitionedFile::new(
"/path/to/file.parquet".to_string(),
1024,
)]])
.with_statistics(Statistics {
num_rows: Precision::Inexact(100),
total_byte_size: Precision::Inexact(1024),
column_statistics: Statistics::unknown_column(&Arc::new(Schema::new(
vec![Field::new("col", DataType::Utf8, false)],
))),
});

roundtrip_test(scan_config.build())
}
Expand All @@ -777,9 +766,9 @@ async fn roundtrip_parquet_exec_with_table_partition_cols() -> Result<()> {
vec![wrap_partition_value_in_dict(ScalarValue::Int64(Some(0)))];
let schema = Arc::new(Schema::new(vec![Field::new("col", DataType::Utf8, false)]));

let source = Arc::new(ParquetSource::default());
let file_source = Arc::new(ParquetSource::default());
let scan_config =
FileScanConfig::new(ObjectStoreUrl::local_filesystem(), schema, source)
FileScanConfig::new(ObjectStoreUrl::local_filesystem(), schema, file_source)
.with_projection(Some(vec![0, 1]))
.with_file_group(vec![file_group])
.with_table_partition_cols(vec![Field::new(
Expand All @@ -801,34 +790,24 @@ fn roundtrip_parquet_exec_with_custom_predicate_expr() -> Result<()> {
inner: Arc::new(Column::new("col", 1)),
});

let source = Arc::new(
let file_source = Arc::new(
ParquetSource::default()
.with_predicate(Arc::clone(&file_schema), custom_predicate_expr),
);

let scan_config = FileScanConfig {
object_store_url: ObjectStoreUrl::local_filesystem(),
file_schema,
file_groups: vec![vec![PartitionedFile::new(
"/path/to/file.parquet".to_string(),
1024,
)]],
constraints: Constraints::empty(),
statistics: Statistics {
num_rows: Precision::Inexact(100),
total_byte_size: Precision::Inexact(1024),
column_statistics: Statistics::unknown_column(&Arc::new(Schema::new(vec![
Field::new("col", DataType::Utf8, false),
]))),
},
projection: None,
limit: None,
table_partition_cols: vec![],
output_ordering: vec![],
file_compression_type: FileCompressionType::UNCOMPRESSED,
new_lines_in_values: false,
file_source: source,
};
let scan_config =
FileScanConfig::new(ObjectStoreUrl::local_filesystem(), file_schema, file_source)
.with_file_groups(vec![vec![PartitionedFile::new(
"/path/to/file.parquet".to_string(),
1024,
)]])
.with_statistics(Statistics {
num_rows: Precision::Inexact(100),
total_byte_size: Precision::Inexact(1024),
column_statistics: Statistics::unknown_column(&Arc::new(Schema::new(
vec![Field::new("col", DataType::Utf8, false)],
))),
});

#[derive(Debug, Clone, Eq)]
struct CustomPredicateExpr {
Expand Down Expand Up @@ -1608,24 +1587,18 @@ async fn roundtrip_projection_source() -> Result<()> {

let statistics = Statistics::new_unknown(&schema);

let source = ParquetSource::default().with_statistics(statistics.clone());
let scan_config = FileScanConfig {
object_store_url: ObjectStoreUrl::local_filesystem(),
file_groups: vec![vec![PartitionedFile::new(
"/path/to/file.parquet".to_string(),
1024,
)]],
constraints: Constraints::empty(),
statistics,
file_schema: schema.clone(),
projection: Some(vec![0, 1, 2]),
limit: None,
table_partition_cols: vec![],
output_ordering: vec![],
file_compression_type: FileCompressionType::UNCOMPRESSED,
new_lines_in_values: false,
file_source: source,
};
let file_source = ParquetSource::default().with_statistics(statistics.clone());
let scan_config = FileScanConfig::new(
Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think this also makes the non-default fields more clear

ObjectStoreUrl::local_filesystem(),
schema.clone(),
file_source,
)
.with_file_groups(vec![vec![PartitionedFile::new(
"/path/to/file.parquet".to_string(),
1024,
)]])
.with_statistics(statistics)
.with_projection(Some(vec![0, 1, 2]));

let filter = Arc::new(
FilterExec::try_new(
Expand Down