Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
350 changes: 350 additions & 0 deletions datafusion/spark/src/function/aggregate/avg.rs
Original file line number Diff line number Diff line change
@@ -0,0 +1,350 @@
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.

use arrow::array::ArrowNativeTypeOp;
use arrow::array::{
builder::PrimitiveBuilder,
cast::AsArray,
types::{Float64Type, Int64Type},
Array, ArrayRef, ArrowNumericType, Int64Array, PrimitiveArray,
};
use arrow::compute::sum;
use arrow::datatypes::{DataType, Field, FieldRef};
use datafusion_common::utils::take_function_args;
use datafusion_common::{not_impl_err, Result, ScalarValue};
use datafusion_expr::function::{AccumulatorArgs, StateFieldsArgs};
use datafusion_expr::type_coercion::aggregates::coerce_avg_type;
use datafusion_expr::utils::format_state_name;
use datafusion_expr::Volatility::Immutable;
use datafusion_expr::{
type_coercion::aggregates::avg_return_type, Accumulator, AggregateUDFImpl, EmitTo,
GroupsAccumulator, ReversedUDAF, Signature,
};
use std::{any::Any, sync::Arc};
use DataType::*;

/// AVG aggregate expression
/// Spark average aggregate expression. Differs from standard DataFusion average aggregate
/// in that it uses an `i64` for the count (DataFusion version uses `u64`); also there is ANSI mode
/// support planned in the future for Spark version.

#[derive(Debug, Clone, PartialEq, Eq, Hash)]
pub struct SparkAvg {
name: String,
signature: Signature,
input_data_type: DataType,
result_data_type: DataType,
}

impl SparkAvg {
/// Implement AVG aggregate function
pub fn new(name: impl Into<String>, data_type: DataType) -> Self {
let result_data_type = avg_return_type("avg", &data_type).unwrap();

Self {
name: name.into(),
signature: Signature::user_defined(Immutable),
input_data_type: data_type,
Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Can input data type vary? Seems to be only Float64 right now, will there be more options in the future? Same for return data type

Copy link
Contributor

@Jefffrey Jefffrey Oct 4, 2025

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I still think it is confusing to require the input & result data types as inputs here; considering input type should be controlled by signature/coerce_types() only, and result data type should be same as return_type() which apparently uses avg_return_type()

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

It is unclear to me why we do this - I think we can either add a patch to be more direct or merge it with Datafusion avg, whichever route is decided upon in the future

result_data_type,
}
}
}

impl AggregateUDFImpl for SparkAvg {
fn as_any(&self) -> &dyn Any {
self
}

fn accumulator(&self, _acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> {
// instantiate specialized accumulator based for the type
match (&self.input_data_type, &self.result_data_type) {
(Float64, Float64) => Ok(Box::<AvgAccumulator>::default()),
_ => not_impl_err!(
"AvgAccumulator for ({} --> {})",
self.input_data_type,
self.result_data_type
),
}
}

fn state_fields(&self, _args: StateFieldsArgs) -> Result<Vec<FieldRef>> {
Ok(vec![
Arc::new(Field::new(
format_state_name(&self.name, "sum"),
self.input_data_type.clone(),
true,
)),
Arc::new(Field::new(
format_state_name(&self.name, "count"),
Int64,
true,
)),
])
}

fn name(&self) -> &str {
&self.name
}

fn reverse_expr(&self) -> ReversedUDAF {
ReversedUDAF::Identical
}

fn groups_accumulator_supported(&self, _args: AccumulatorArgs) -> bool {
true
}

fn create_groups_accumulator(
&self,
_args: AccumulatorArgs,
) -> Result<Box<dyn GroupsAccumulator>> {
// instantiate specialized accumulator based for the type
match (&self.input_data_type, &self.result_data_type) {
(Float64, Float64) => {
Ok(Box::new(AvgGroupsAccumulator::<Float64Type, _>::new(
&self.input_data_type,
|sum: f64, count: i64| Ok(sum / count as f64),
)))
}

_ => not_impl_err!(
"AvgGroupsAccumulator for ({} --> {})",
self.input_data_type,
self.result_data_type
),
}
}

fn default_value(&self, _data_type: &DataType) -> Result<ScalarValue> {
Ok(ScalarValue::Float64(None))
}

fn signature(&self) -> &Signature {
&self.signature
}

fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> {
avg_return_type(self.name(), &arg_types[0])
}

fn coerce_types(&self, arg_types: &[DataType]) -> Result<Vec<DataType>> {
let [arg] = take_function_args(self.name(), arg_types)?;
coerce_avg_type(self.name(), std::slice::from_ref(arg))
}
}

/// An accumulator to compute the average
#[derive(Debug, Default)]
pub struct AvgAccumulator {
sum: Option<f64>,
count: i64,
}

impl Accumulator for AvgAccumulator {
fn state(&mut self) -> Result<Vec<ScalarValue>> {
Ok(vec![
ScalarValue::Float64(self.sum),
ScalarValue::from(self.count),
])
}

fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> {
let values = values[0].as_primitive::<Float64Type>();
self.count += (values.len() - values.null_count()) as i64;
let v = self.sum.get_or_insert(0.);
if let Some(x) = sum(values) {
*v += x;
}
Ok(())
}

fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> {
// counts are summed
self.count += sum(states[1].as_primitive::<Int64Type>()).unwrap_or_default();

// sums are summed
if let Some(x) = sum(states[0].as_primitive::<Float64Type>()) {
let v = self.sum.get_or_insert(0.);
*v += x;
}
Ok(())
}

fn evaluate(&mut self) -> Result<ScalarValue> {
if self.count == 0 {
// If all input are nulls, count will be 0 and we will get null after the division.
// This is consistent with Spark Average implementation.
Ok(ScalarValue::Float64(None))
} else {
Ok(ScalarValue::Float64(
self.sum.map(|f| f / self.count as f64),
))
}
}

fn size(&self) -> usize {
size_of_val(self)
}
}

/// An accumulator to compute the average of `[PrimitiveArray<T>]`.
/// Stores values as native types, and does overflow checking
///
/// F: Function that calculates the average value from a sum of
/// T::Native and a total count
#[derive(Debug)]
struct AvgGroupsAccumulator<T, F>
where
T: ArrowNumericType + Send,
F: Fn(T::Native, i64) -> Result<T::Native> + Send,
{
/// The type of the returned average
return_data_type: DataType,

/// Count per group (use i64 to make Int64Array)
counts: Vec<i64>,

/// Sums per group, stored as the native type
sums: Vec<T::Native>,

/// Function that computes the final average (value / count)
avg_fn: F,
}

impl<T, F> AvgGroupsAccumulator<T, F>
where
T: ArrowNumericType + Send,
F: Fn(T::Native, i64) -> Result<T::Native> + Send,
{
pub fn new(return_data_type: &DataType, avg_fn: F) -> Self {
Self {
return_data_type: return_data_type.clone(),
counts: vec![],
sums: vec![],
avg_fn,
}
}
}

impl<T, F> GroupsAccumulator for AvgGroupsAccumulator<T, F>
where
T: ArrowNumericType + Send,
F: Fn(T::Native, i64) -> Result<T::Native> + Send,
{
fn update_batch(
&mut self,
values: &[ArrayRef],
group_indices: &[usize],
_opt_filter: Option<&arrow::array::BooleanArray>,
total_num_groups: usize,
) -> Result<()> {
assert_eq!(values.len(), 1, "single argument to update_batch");
let values = values[0].as_primitive::<T>();
let data = values.values();

// increment counts, update sums
self.counts.resize(total_num_groups, 0);
self.sums.resize(total_num_groups, T::default_value());

let iter = group_indices.iter().zip(data.iter());
if values.null_count() == 0 {
for (&group_index, &value) in iter {
let sum = &mut self.sums[group_index];
*sum = (*sum).add_wrapping(value);
self.counts[group_index] += 1;
}
} else {
for (idx, (&group_index, &value)) in iter.enumerate() {
if values.is_null(idx) {
continue;
}
let sum = &mut self.sums[group_index];
*sum = (*sum).add_wrapping(value);

self.counts[group_index] += 1;
}
}

Ok(())
}

fn merge_batch(
&mut self,
values: &[ArrayRef],
group_indices: &[usize],
_opt_filter: Option<&arrow::array::BooleanArray>,
total_num_groups: usize,
) -> Result<()> {
assert_eq!(values.len(), 2, "two arguments to merge_batch");
// first batch is partial sums, second is counts
let partial_sums = values[0].as_primitive::<T>();
let partial_counts = values[1].as_primitive::<Int64Type>();
// update counts with partial counts
self.counts.resize(total_num_groups, 0);
let iter1 = group_indices.iter().zip(partial_counts.values().iter());
for (&group_index, &partial_count) in iter1 {
self.counts[group_index] += partial_count;
}

// update sums
self.sums.resize(total_num_groups, T::default_value());
let iter2 = group_indices.iter().zip(partial_sums.values().iter());
for (&group_index, &new_value) in iter2 {
let sum = &mut self.sums[group_index];
*sum = sum.add_wrapping(new_value);
}

Ok(())
}

fn evaluate(&mut self, emit_to: EmitTo) -> Result<ArrayRef> {
let counts = emit_to.take_needed(&mut self.counts);
let sums = emit_to.take_needed(&mut self.sums);
let mut builder = PrimitiveBuilder::<T>::with_capacity(sums.len());
let iter = sums.into_iter().zip(counts);

for (sum, count) in iter {
if count != 0 {
builder.append_value((self.avg_fn)(sum, count)?)
} else {
builder.append_null();
}
}
let array: PrimitiveArray<T> = builder.finish();

Ok(Arc::new(array))
}

// return arrays for sums and counts
fn state(&mut self, emit_to: EmitTo) -> Result<Vec<ArrayRef>> {
let counts = emit_to.take_needed(&mut self.counts);
let counts = Int64Array::new(counts.into(), None);

let sums = emit_to.take_needed(&mut self.sums);
let sums = PrimitiveArray::<T>::new(sums.into(), None)
.with_data_type(self.return_data_type.clone());

Ok(vec![
Arc::new(sums) as ArrayRef,
Arc::new(counts) as ArrayRef,
])
}

fn size(&self) -> usize {
self.counts.capacity() * size_of::<i64>() + self.sums.capacity() * size_of::<T>()
}
}
17 changes: 15 additions & 2 deletions datafusion/spark/src/function/aggregate/mod.rs
Original file line number Diff line number Diff line change
Expand Up @@ -15,11 +15,24 @@
// specific language governing permissions and limitations
// under the License.

use arrow::datatypes::DataType;
use datafusion_expr::AggregateUDF;
use std::sync::Arc;

pub mod expr_fn {}
pub mod avg;
pub mod expr_fn {
use datafusion_functions::export_functions;

export_functions!((avg, "Returns the average value of a given column", arg1));
}

pub fn avg() -> Arc<AggregateUDF> {
Arc::new(AggregateUDF::new_from_impl(avg::SparkAvg::new(
"avg",
DataType::Float64,
)))
}

pub fn functions() -> Vec<Arc<AggregateUDF>> {
vec![]
vec![avg()]
}
Loading