-
Notifications
You must be signed in to change notification settings - Fork 1.7k
Feat: [datafusion-spark] Migrate avg from comet to datafusion-spark and add tests. #17871
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Changes from all commits
b1b9e6b
054fd13
277bcd1
0bea9c2
f1f87cd
0701476
b0a51e5
File filter
Filter by extension
Conversations
Jump to
Diff view
Diff view
There are no files selected for viewing
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,350 @@ | ||
// Licensed to the Apache Software Foundation (ASF) under one | ||
// or more contributor license agreements. See the NOTICE file | ||
// distributed with this work for additional information | ||
// regarding copyright ownership. The ASF licenses this file | ||
// to you under the Apache License, Version 2.0 (the | ||
// "License"); you may not use this file except in compliance | ||
// with the License. You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, | ||
// software distributed under the License is distributed on an | ||
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY | ||
// KIND, either express or implied. See the License for the | ||
// specific language governing permissions and limitations | ||
// under the License. | ||
|
||
use arrow::array::ArrowNativeTypeOp; | ||
use arrow::array::{ | ||
builder::PrimitiveBuilder, | ||
cast::AsArray, | ||
types::{Float64Type, Int64Type}, | ||
Array, ArrayRef, ArrowNumericType, Int64Array, PrimitiveArray, | ||
}; | ||
use arrow::compute::sum; | ||
use arrow::datatypes::{DataType, Field, FieldRef}; | ||
use datafusion_common::utils::take_function_args; | ||
use datafusion_common::{not_impl_err, Result, ScalarValue}; | ||
use datafusion_expr::function::{AccumulatorArgs, StateFieldsArgs}; | ||
use datafusion_expr::type_coercion::aggregates::coerce_avg_type; | ||
use datafusion_expr::utils::format_state_name; | ||
use datafusion_expr::Volatility::Immutable; | ||
use datafusion_expr::{ | ||
type_coercion::aggregates::avg_return_type, Accumulator, AggregateUDFImpl, EmitTo, | ||
GroupsAccumulator, ReversedUDAF, Signature, | ||
}; | ||
use std::{any::Any, sync::Arc}; | ||
use DataType::*; | ||
|
||
/// AVG aggregate expression | ||
/// Spark average aggregate expression. Differs from standard DataFusion average aggregate | ||
/// in that it uses an `i64` for the count (DataFusion version uses `u64`); also there is ANSI mode | ||
/// support planned in the future for Spark version. | ||
|
||
#[derive(Debug, Clone, PartialEq, Eq, Hash)] | ||
pub struct SparkAvg { | ||
name: String, | ||
signature: Signature, | ||
input_data_type: DataType, | ||
result_data_type: DataType, | ||
} | ||
|
||
impl SparkAvg { | ||
/// Implement AVG aggregate function | ||
pub fn new(name: impl Into<String>, data_type: DataType) -> Self { | ||
let result_data_type = avg_return_type("avg", &data_type).unwrap(); | ||
|
||
Self { | ||
name: name.into(), | ||
signature: Signature::user_defined(Immutable), | ||
input_data_type: data_type, | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Can input data type vary? Seems to be only Float64 right now, will there be more options in the future? Same for return data type There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. I still think it is confusing to require the input & result data types as inputs here; considering input type should be controlled by signature/ There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. It is unclear to me why we do this - I think we can either add a patch to be more direct or merge it with Datafusion avg, whichever route is decided upon in the future |
||
result_data_type, | ||
} | ||
} | ||
} | ||
|
||
impl AggregateUDFImpl for SparkAvg { | ||
fn as_any(&self) -> &dyn Any { | ||
self | ||
} | ||
|
||
fn accumulator(&self, _acc_args: AccumulatorArgs) -> Result<Box<dyn Accumulator>> { | ||
// instantiate specialized accumulator based for the type | ||
match (&self.input_data_type, &self.result_data_type) { | ||
(Float64, Float64) => Ok(Box::<AvgAccumulator>::default()), | ||
_ => not_impl_err!( | ||
"AvgAccumulator for ({} --> {})", | ||
self.input_data_type, | ||
self.result_data_type | ||
), | ||
} | ||
} | ||
|
||
fn state_fields(&self, _args: StateFieldsArgs) -> Result<Vec<FieldRef>> { | ||
Ok(vec![ | ||
Arc::new(Field::new( | ||
format_state_name(&self.name, "sum"), | ||
self.input_data_type.clone(), | ||
true, | ||
)), | ||
Arc::new(Field::new( | ||
format_state_name(&self.name, "count"), | ||
Int64, | ||
true, | ||
)), | ||
]) | ||
} | ||
|
||
fn name(&self) -> &str { | ||
&self.name | ||
} | ||
|
||
fn reverse_expr(&self) -> ReversedUDAF { | ||
ReversedUDAF::Identical | ||
} | ||
|
||
fn groups_accumulator_supported(&self, _args: AccumulatorArgs) -> bool { | ||
true | ||
} | ||
|
||
fn create_groups_accumulator( | ||
&self, | ||
_args: AccumulatorArgs, | ||
) -> Result<Box<dyn GroupsAccumulator>> { | ||
// instantiate specialized accumulator based for the type | ||
match (&self.input_data_type, &self.result_data_type) { | ||
(Float64, Float64) => { | ||
Ok(Box::new(AvgGroupsAccumulator::<Float64Type, _>::new( | ||
&self.input_data_type, | ||
|sum: f64, count: i64| Ok(sum / count as f64), | ||
))) | ||
} | ||
|
||
_ => not_impl_err!( | ||
"AvgGroupsAccumulator for ({} --> {})", | ||
self.input_data_type, | ||
self.result_data_type | ||
), | ||
} | ||
} | ||
|
||
fn default_value(&self, _data_type: &DataType) -> Result<ScalarValue> { | ||
Ok(ScalarValue::Float64(None)) | ||
} | ||
|
||
fn signature(&self) -> &Signature { | ||
&self.signature | ||
} | ||
|
||
fn return_type(&self, arg_types: &[DataType]) -> Result<DataType> { | ||
avg_return_type(self.name(), &arg_types[0]) | ||
} | ||
|
||
fn coerce_types(&self, arg_types: &[DataType]) -> Result<Vec<DataType>> { | ||
let [arg] = take_function_args(self.name(), arg_types)?; | ||
coerce_avg_type(self.name(), std::slice::from_ref(arg)) | ||
} | ||
} | ||
|
||
/// An accumulator to compute the average | ||
#[derive(Debug, Default)] | ||
pub struct AvgAccumulator { | ||
sum: Option<f64>, | ||
count: i64, | ||
} | ||
|
||
impl Accumulator for AvgAccumulator { | ||
fn state(&mut self) -> Result<Vec<ScalarValue>> { | ||
Ok(vec![ | ||
ScalarValue::Float64(self.sum), | ||
ScalarValue::from(self.count), | ||
]) | ||
} | ||
|
||
fn update_batch(&mut self, values: &[ArrayRef]) -> Result<()> { | ||
let values = values[0].as_primitive::<Float64Type>(); | ||
self.count += (values.len() - values.null_count()) as i64; | ||
let v = self.sum.get_or_insert(0.); | ||
if let Some(x) = sum(values) { | ||
*v += x; | ||
} | ||
Ok(()) | ||
} | ||
|
||
fn merge_batch(&mut self, states: &[ArrayRef]) -> Result<()> { | ||
// counts are summed | ||
self.count += sum(states[1].as_primitive::<Int64Type>()).unwrap_or_default(); | ||
|
||
// sums are summed | ||
if let Some(x) = sum(states[0].as_primitive::<Float64Type>()) { | ||
let v = self.sum.get_or_insert(0.); | ||
*v += x; | ||
} | ||
Ok(()) | ||
} | ||
|
||
fn evaluate(&mut self) -> Result<ScalarValue> { | ||
if self.count == 0 { | ||
// If all input are nulls, count will be 0 and we will get null after the division. | ||
// This is consistent with Spark Average implementation. | ||
Ok(ScalarValue::Float64(None)) | ||
} else { | ||
Ok(ScalarValue::Float64( | ||
self.sum.map(|f| f / self.count as f64), | ||
)) | ||
} | ||
} | ||
|
||
fn size(&self) -> usize { | ||
size_of_val(self) | ||
} | ||
} | ||
|
||
/// An accumulator to compute the average of `[PrimitiveArray<T>]`. | ||
/// Stores values as native types, and does overflow checking | ||
/// | ||
/// F: Function that calculates the average value from a sum of | ||
/// T::Native and a total count | ||
#[derive(Debug)] | ||
struct AvgGroupsAccumulator<T, F> | ||
where | ||
T: ArrowNumericType + Send, | ||
F: Fn(T::Native, i64) -> Result<T::Native> + Send, | ||
{ | ||
/// The type of the returned average | ||
return_data_type: DataType, | ||
|
||
/// Count per group (use i64 to make Int64Array) | ||
counts: Vec<i64>, | ||
|
||
/// Sums per group, stored as the native type | ||
sums: Vec<T::Native>, | ||
|
||
/// Function that computes the final average (value / count) | ||
avg_fn: F, | ||
} | ||
|
||
impl<T, F> AvgGroupsAccumulator<T, F> | ||
where | ||
T: ArrowNumericType + Send, | ||
F: Fn(T::Native, i64) -> Result<T::Native> + Send, | ||
{ | ||
pub fn new(return_data_type: &DataType, avg_fn: F) -> Self { | ||
Self { | ||
return_data_type: return_data_type.clone(), | ||
counts: vec![], | ||
sums: vec![], | ||
avg_fn, | ||
} | ||
} | ||
} | ||
|
||
impl<T, F> GroupsAccumulator for AvgGroupsAccumulator<T, F> | ||
where | ||
T: ArrowNumericType + Send, | ||
F: Fn(T::Native, i64) -> Result<T::Native> + Send, | ||
{ | ||
fn update_batch( | ||
&mut self, | ||
values: &[ArrayRef], | ||
group_indices: &[usize], | ||
_opt_filter: Option<&arrow::array::BooleanArray>, | ||
total_num_groups: usize, | ||
) -> Result<()> { | ||
assert_eq!(values.len(), 1, "single argument to update_batch"); | ||
let values = values[0].as_primitive::<T>(); | ||
let data = values.values(); | ||
|
||
// increment counts, update sums | ||
self.counts.resize(total_num_groups, 0); | ||
self.sums.resize(total_num_groups, T::default_value()); | ||
|
||
let iter = group_indices.iter().zip(data.iter()); | ||
if values.null_count() == 0 { | ||
for (&group_index, &value) in iter { | ||
let sum = &mut self.sums[group_index]; | ||
*sum = (*sum).add_wrapping(value); | ||
self.counts[group_index] += 1; | ||
} | ||
} else { | ||
for (idx, (&group_index, &value)) in iter.enumerate() { | ||
if values.is_null(idx) { | ||
continue; | ||
} | ||
let sum = &mut self.sums[group_index]; | ||
*sum = (*sum).add_wrapping(value); | ||
|
||
self.counts[group_index] += 1; | ||
} | ||
} | ||
|
||
Ok(()) | ||
} | ||
|
||
fn merge_batch( | ||
&mut self, | ||
values: &[ArrayRef], | ||
group_indices: &[usize], | ||
_opt_filter: Option<&arrow::array::BooleanArray>, | ||
total_num_groups: usize, | ||
) -> Result<()> { | ||
assert_eq!(values.len(), 2, "two arguments to merge_batch"); | ||
// first batch is partial sums, second is counts | ||
let partial_sums = values[0].as_primitive::<T>(); | ||
let partial_counts = values[1].as_primitive::<Int64Type>(); | ||
// update counts with partial counts | ||
self.counts.resize(total_num_groups, 0); | ||
let iter1 = group_indices.iter().zip(partial_counts.values().iter()); | ||
for (&group_index, &partial_count) in iter1 { | ||
self.counts[group_index] += partial_count; | ||
} | ||
|
||
// update sums | ||
self.sums.resize(total_num_groups, T::default_value()); | ||
let iter2 = group_indices.iter().zip(partial_sums.values().iter()); | ||
for (&group_index, &new_value) in iter2 { | ||
let sum = &mut self.sums[group_index]; | ||
*sum = sum.add_wrapping(new_value); | ||
} | ||
|
||
Ok(()) | ||
} | ||
|
||
fn evaluate(&mut self, emit_to: EmitTo) -> Result<ArrayRef> { | ||
let counts = emit_to.take_needed(&mut self.counts); | ||
let sums = emit_to.take_needed(&mut self.sums); | ||
let mut builder = PrimitiveBuilder::<T>::with_capacity(sums.len()); | ||
let iter = sums.into_iter().zip(counts); | ||
|
||
for (sum, count) in iter { | ||
if count != 0 { | ||
builder.append_value((self.avg_fn)(sum, count)?) | ||
} else { | ||
builder.append_null(); | ||
} | ||
} | ||
let array: PrimitiveArray<T> = builder.finish(); | ||
|
||
Ok(Arc::new(array)) | ||
} | ||
|
||
// return arrays for sums and counts | ||
fn state(&mut self, emit_to: EmitTo) -> Result<Vec<ArrayRef>> { | ||
let counts = emit_to.take_needed(&mut self.counts); | ||
let counts = Int64Array::new(counts.into(), None); | ||
|
||
let sums = emit_to.take_needed(&mut self.sums); | ||
let sums = PrimitiveArray::<T>::new(sums.into(), None) | ||
.with_data_type(self.return_data_type.clone()); | ||
|
||
Ok(vec![ | ||
Arc::new(sums) as ArrayRef, | ||
Arc::new(counts) as ArrayRef, | ||
]) | ||
} | ||
|
||
fn size(&self) -> usize { | ||
self.counts.capacity() * size_of::<i64>() + self.sums.capacity() * size_of::<T>() | ||
} | ||
} |
Uh oh!
There was an error while loading. Please reload this page.