-
Notifications
You must be signed in to change notification settings - Fork 28.9k
[SPARK-18674][SQL] improve the error message of using join #16100
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
| override def sql: String = "NATURAL " + tpe.sql | ||
| } | ||
|
|
||
| case class UsingJoin(tpe: JoinType, usingColumns: Seq[UnresolvedAttribute]) extends JoinType { |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
the USING column can never has a qualifier, or be a nested field, we don't need to use UnresolvedAttribute here.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Yeah, we do not support the nested field. It also fails with your newly changed error.
sql("CREATE TABLE complexTypeTable (s struct<i: string>)")
val df = table("complexTypeTable")
df.as("b").join(df.as("a"), "s.i").show()Could you add the test case for it? Thanks!
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Submitted a follow-up PR #16110 for the test case of nested fields. When we implementing using join, we did not add any test case for nested fields. Thus, it was not covered before.
|
cc @rxin @gatorsmile |
|
This is a good fix! Will review it today. |
|
Test build #69481 has finished for PR 16100 at commit
|
|
LGTM |
|
Merging to master and 2.1. Thanks! |
## What changes were proposed in this pull request?
The current error message of USING join is quite confusing, for example:
```
scala> val df1 = List(1,2,3).toDS.withColumnRenamed("value", "c1")
df1: org.apache.spark.sql.DataFrame = [c1: int]
scala> val df2 = List(1,2,3).toDS.withColumnRenamed("value", "c2")
df2: org.apache.spark.sql.DataFrame = [c2: int]
scala> df1.join(df2, usingColumn = "c1")
org.apache.spark.sql.AnalysisException: using columns ['c1] can not be resolved given input columns: [c1, c2] ;;
'Join UsingJoin(Inner,List('c1))
:- Project [value#1 AS c1#3]
: +- LocalRelation [value#1]
+- Project [value#7 AS c2#9]
+- LocalRelation [value#7]
```
after this PR, it becomes:
```
scala> val df1 = List(1,2,3).toDS.withColumnRenamed("value", "c1")
df1: org.apache.spark.sql.DataFrame = [c1: int]
scala> val df2 = List(1,2,3).toDS.withColumnRenamed("value", "c2")
df2: org.apache.spark.sql.DataFrame = [c2: int]
scala> df1.join(df2, usingColumn = "c1")
org.apache.spark.sql.AnalysisException: USING column `c1` can not be resolved with the right join side, the right output is: [c2];
```
## How was this patch tested?
updated tests
Author: Wenchen Fan <[email protected]>
Closes #16100 from cloud-fan/natural.
(cherry picked from commit e653484)
Signed-off-by: Herman van Hovell <[email protected]>
## What changes were proposed in this pull request?
The current error message of USING join is quite confusing, for example:
```
scala> val df1 = List(1,2,3).toDS.withColumnRenamed("value", "c1")
df1: org.apache.spark.sql.DataFrame = [c1: int]
scala> val df2 = List(1,2,3).toDS.withColumnRenamed("value", "c2")
df2: org.apache.spark.sql.DataFrame = [c2: int]
scala> df1.join(df2, usingColumn = "c1")
org.apache.spark.sql.AnalysisException: using columns ['c1] can not be resolved given input columns: [c1, c2] ;;
'Join UsingJoin(Inner,List('c1))
:- Project [value#1 AS c1#3]
: +- LocalRelation [value#1]
+- Project [value#7 AS c2#9]
+- LocalRelation [value#7]
```
after this PR, it becomes:
```
scala> val df1 = List(1,2,3).toDS.withColumnRenamed("value", "c1")
df1: org.apache.spark.sql.DataFrame = [c1: int]
scala> val df2 = List(1,2,3).toDS.withColumnRenamed("value", "c2")
df2: org.apache.spark.sql.DataFrame = [c2: int]
scala> df1.join(df2, usingColumn = "c1")
org.apache.spark.sql.AnalysisException: USING column `c1` can not be resolved with the right join side, the right output is: [c2];
```
## How was this patch tested?
updated tests
Author: Wenchen Fan <[email protected]>
Closes #16100 from cloud-fan/natural.
(cherry picked from commit e653484)
Signed-off-by: Herman van Hovell <[email protected]>
## What changes were proposed in this pull request?
The current error message of USING join is quite confusing, for example:
```
scala> val df1 = List(1,2,3).toDS.withColumnRenamed("value", "c1")
df1: org.apache.spark.sql.DataFrame = [c1: int]
scala> val df2 = List(1,2,3).toDS.withColumnRenamed("value", "c2")
df2: org.apache.spark.sql.DataFrame = [c2: int]
scala> df1.join(df2, usingColumn = "c1")
org.apache.spark.sql.AnalysisException: using columns ['c1] can not be resolved given input columns: [c1, c2] ;;
'Join UsingJoin(Inner,List('c1))
:- Project [value#1 AS c1#3]
: +- LocalRelation [value#1]
+- Project [value#7 AS c2#9]
+- LocalRelation [value#7]
```
after this PR, it becomes:
```
scala> val df1 = List(1,2,3).toDS.withColumnRenamed("value", "c1")
df1: org.apache.spark.sql.DataFrame = [c1: int]
scala> val df2 = List(1,2,3).toDS.withColumnRenamed("value", "c2")
df2: org.apache.spark.sql.DataFrame = [c2: int]
scala> df1.join(df2, usingColumn = "c1")
org.apache.spark.sql.AnalysisException: USING column `c1` can not be resolved with the right join side, the right output is: [c2];
```
## How was this patch tested?
updated tests
Author: Wenchen Fan <[email protected]>
Closes apache#16100 from cloud-fan/natural.
## What changes were proposed in this pull request?
The current error message of USING join is quite confusing, for example:
```
scala> val df1 = List(1,2,3).toDS.withColumnRenamed("value", "c1")
df1: org.apache.spark.sql.DataFrame = [c1: int]
scala> val df2 = List(1,2,3).toDS.withColumnRenamed("value", "c2")
df2: org.apache.spark.sql.DataFrame = [c2: int]
scala> df1.join(df2, usingColumn = "c1")
org.apache.spark.sql.AnalysisException: using columns ['c1] can not be resolved given input columns: [c1, c2] ;;
'Join UsingJoin(Inner,List('c1))
:- Project [value#1 AS c1#3]
: +- LocalRelation [value#1]
+- Project [value#7 AS c2#9]
+- LocalRelation [value#7]
```
after this PR, it becomes:
```
scala> val df1 = List(1,2,3).toDS.withColumnRenamed("value", "c1")
df1: org.apache.spark.sql.DataFrame = [c1: int]
scala> val df2 = List(1,2,3).toDS.withColumnRenamed("value", "c2")
df2: org.apache.spark.sql.DataFrame = [c2: int]
scala> df1.join(df2, usingColumn = "c1")
org.apache.spark.sql.AnalysisException: USING column `c1` can not be resolved with the right join side, the right output is: [c2];
```
## How was this patch tested?
updated tests
Author: Wenchen Fan <[email protected]>
Closes apache#16100 from cloud-fan/natural.
What changes were proposed in this pull request?
The current error message of USING join is quite confusing, for example:
after this PR, it becomes:
How was this patch tested?
updated tests