Skip to content
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
27 changes: 0 additions & 27 deletions docs/configuration.md
Original file line number Diff line number Diff line change
Expand Up @@ -456,33 +456,6 @@ Apart from these, the following properties are also available, and may be useful
from JVM to Python worker for every task.
</td>
</tr>
<tr>
<td><code>spark.sql.repl.eagerEval.enabled</code></td>
<td>false</td>
<td>
Enable eager evaluation or not. If true and the REPL you are using supports eager evaluation,
Dataset will be ran automatically. The HTML table which generated by <code>_repl_html_</code>
called by notebooks like Jupyter will feedback the queries user have defined. For plain Python
REPL, the output will be shown like <code>dataframe.show()</code>
(see <a href="https://issues.apache.org/jira/browse/SPARK-24215">SPARK-24215</a> for more details).
</td>
</tr>
<tr>
<td><code>spark.sql.repl.eagerEval.maxNumRows</code></td>
<td>20</td>
<td>
Default number of rows in eager evaluation output HTML table generated by <code>_repr_html_</code> or plain text,
this only take effect when <code>spark.sql.repl.eagerEval.enabled</code> is set to true.
</td>
</tr>
<tr>
<td><code>spark.sql.repl.eagerEval.truncate</code></td>
<td>20</td>
<td>
Default number of truncate in eager evaluation output HTML table generated by <code>_repr_html_</code> or
plain text, this only take effect when <code>spark.sql.repl.eagerEval.enabled</code> set to true.
</td>
</tr>
Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

we are removing documentation?

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

SQL Confs are not part of the documentation.

Copy link
Member

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

this should be in sql-programming-guide.md right?

Copy link
Member Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

Follow the SQL configuration, all the description can be shown by spark.sql("SET -v").show(numRows = 200, truncate = false). https://spark.apache.org/docs/latest/configuration.html#spark-sql

<tr>
<td><code>spark.files</code></td>
<td></td>
Expand Down
3 changes: 1 addition & 2 deletions python/pyspark/sql/dataframe.py
Original file line number Diff line number Diff line change
Expand Up @@ -393,9 +393,8 @@ def _repr_html_(self):
self._support_repr_html = True
if self._eager_eval:
max_num_rows = max(self._max_num_rows, 0)
vertical = False
sock_info = self._jdf.getRowsToPython(
max_num_rows, self._truncate, vertical)
max_num_rows, self._truncate)
rows = list(_load_from_socket(sock_info, BatchedSerializer(PickleSerializer())))
head = rows[0]
row_data = rows[1:]
Expand Down
46 changes: 44 additions & 2 deletions python/pyspark/sql/tests.py
Original file line number Diff line number Diff line change
Expand Up @@ -3351,11 +3351,41 @@ def test_checking_csv_header(self):
finally:
shutil.rmtree(path)

def test_repr_html(self):
def test_repr_behaviors(self):
import re
pattern = re.compile(r'^ *\|', re.MULTILINE)
df = self.spark.createDataFrame([(1, "1"), (22222, "22222")], ("key", "value"))
self.assertEquals(None, df._repr_html_())

# test when eager evaluation is enabled and _repr_html_ will not be called
with self.sql_conf({"spark.sql.repl.eagerEval.enabled": True}):
expected1 = """+-----+-----+
|| key|value|
|+-----+-----+
|| 1| 1|
||22222|22222|
|+-----+-----+
|"""
self.assertEquals(re.sub(pattern, '', expected1), df.__repr__())
with self.sql_conf({"spark.sql.repl.eagerEval.truncate": 3}):
expected2 = """+---+-----+
||key|value|
|+---+-----+
|| 1| 1|
||222| 222|
|+---+-----+
|"""
self.assertEquals(re.sub(pattern, '', expected2), df.__repr__())
with self.sql_conf({"spark.sql.repl.eagerEval.maxNumRows": 1}):
expected3 = """+---+-----+
||key|value|
|+---+-----+
|| 1| 1|
|+---+-----+
|only showing top 1 row
|"""
self.assertEquals(re.sub(pattern, '', expected3), df.__repr__())

# test when eager evaluation is enabled and _repr_html_ will be called
with self.sql_conf({"spark.sql.repl.eagerEval.enabled": True}):
expected1 = """<table border='1'>
|<tr><th>key</th><th>value</th></tr>
Expand All @@ -3381,6 +3411,18 @@ def test_repr_html(self):
|"""
self.assertEquals(re.sub(pattern, '', expected3), df._repr_html_())

# test when eager evaluation is disabled and _repr_html_ will be called
with self.sql_conf({"spark.sql.repl.eagerEval.enabled": False}):
expected = "DataFrame[key: bigint, value: string]"
self.assertEquals(None, df._repr_html_())
self.assertEquals(expected, df.__repr__())
with self.sql_conf({"spark.sql.repl.eagerEval.truncate": 3}):
self.assertEquals(None, df._repr_html_())
self.assertEquals(expected, df.__repr__())
with self.sql_conf({"spark.sql.repl.eagerEval.maxNumRows": 1}):
self.assertEquals(None, df._repr_html_())
self.assertEquals(expected, df.__repr__())


class HiveSparkSubmitTests(SparkSubmitTests):

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1330,6 +1330,29 @@ object SQLConf {
"The size function returns null for null input if the flag is disabled.")
.booleanConf
.createWithDefault(true)

val REPL_EAGER_EVAL_ENABLED = buildConf("spark.sql.repl.eagerEval.enabled")
.doc("Enables eager evaluation or not. When true, the top K rows of Dataset will be " +
"displayed if and only if the REPL supports the eager evaluation. Currently, the " +
"eager evaluation is only supported in PySpark. For the notebooks like Jupyter, " +
"the HTML table (generated by _repr_html_) will be returned. For plain Python REPL, " +
"the returned outputs are formatted like dataframe.show().")
.booleanConf
.createWithDefault(false)

val REPL_EAGER_EVAL_MAX_NUM_ROWS = buildConf("spark.sql.repl.eagerEval.maxNumRows")
.doc("The max number of rows that are returned by eager evaluation. This only takes " +
"effect when spark.sql.repl.eagerEval.enabled is set to true. The valid range of this " +
"config is from 0 to (Int.MaxValue - 1), so the invalid config like negative and " +
"greater than (Int.MaxValue - 1) will be normalized to 0 and (Int.MaxValue - 1).")
.intConf
.createWithDefault(20)

val REPL_EAGER_EVAL_TRUNCATE = buildConf("spark.sql.repl.eagerEval.truncate")
.doc("The max number of characters for each cell that is returned by eager evaluation. " +
"This only takes effect when spark.sql.repl.eagerEval.enabled is set to true.")
.intConf
.createWithDefault(20)
}

/**
Expand Down
11 changes: 4 additions & 7 deletions sql/core/src/main/scala/org/apache/spark/sql/Dataset.scala
Original file line number Diff line number Diff line change
Expand Up @@ -236,12 +236,10 @@ class Dataset[T] private[sql](
* @param numRows Number of rows to return
* @param truncate If set to more than 0, truncates strings to `truncate` characters and
* all cells will be aligned right.
* @param vertical If set to true, the rows to return do not need truncate.
*/
private[sql] def getRows(
numRows: Int,
truncate: Int,
vertical: Boolean): Seq[Seq[String]] = {
truncate: Int): Seq[Seq[String]] = {
val newDf = toDF()
val castCols = newDf.logicalPlan.output.map { col =>
// Since binary types in top-level schema fields have a specific format to print,
Expand Down Expand Up @@ -289,7 +287,7 @@ class Dataset[T] private[sql](
vertical: Boolean = false): String = {
val numRows = _numRows.max(0).min(Int.MaxValue - 1)
// Get rows represented by Seq[Seq[String]], we may get one more line if it has more data.
val tmpRows = getRows(numRows, truncate, vertical)
val tmpRows = getRows(numRows, truncate)

val hasMoreData = tmpRows.length - 1 > numRows
val rows = tmpRows.take(numRows + 1)
Expand Down Expand Up @@ -3226,11 +3224,10 @@ class Dataset[T] private[sql](

private[sql] def getRowsToPython(
_numRows: Int,
truncate: Int,
vertical: Boolean): Array[Any] = {
truncate: Int): Array[Any] = {
EvaluatePython.registerPicklers()
val numRows = _numRows.max(0).min(Int.MaxValue - 1)
val rows = getRows(numRows, truncate, vertical).map(_.toArray).toArray
val rows = getRows(numRows, truncate).map(_.toArray).toArray
val toJava: (Any) => Any = EvaluatePython.toJava(_, ArrayType(ArrayType(StringType)))
val iter: Iterator[Array[Byte]] = new SerDeUtil.AutoBatchedPickler(
rows.iterator.map(toJava))
Expand Down
59 changes: 59 additions & 0 deletions sql/core/src/test/scala/org/apache/spark/sql/DataFrameSuite.scala
Original file line number Diff line number Diff line change
Expand Up @@ -1044,6 +1044,65 @@ class DataFrameSuite extends QueryTest with SharedSQLContext {
testData.select($"*").show(1000)
}

test("getRows: truncate = [0, 20]") {
val longString = Array.fill(21)("1").mkString
val df = sparkContext.parallelize(Seq("1", longString)).toDF()
val expectedAnswerForFalse = Seq(
Seq("value"),
Seq("1"),
Seq("111111111111111111111"))
assert(df.getRows(10, 0) === expectedAnswerForFalse)
val expectedAnswerForTrue = Seq(
Seq("value"),
Seq("1"),
Seq("11111111111111111..."))
assert(df.getRows(10, 20) === expectedAnswerForTrue)
}

test("getRows: truncate = [3, 17]") {
val longString = Array.fill(21)("1").mkString
val df = sparkContext.parallelize(Seq("1", longString)).toDF()
val expectedAnswerForFalse = Seq(
Seq("value"),
Seq("1"),
Seq("111"))
assert(df.getRows(10, 3) === expectedAnswerForFalse)
val expectedAnswerForTrue = Seq(
Seq("value"),
Seq("1"),
Seq("11111111111111..."))
assert(df.getRows(10, 17) === expectedAnswerForTrue)
}

test("getRows: numRows = 0") {
val expectedAnswer = Seq(Seq("key", "value"), Seq("1", "1"))
assert(testData.select($"*").getRows(0, 20) === expectedAnswer)
}

test("getRows: array") {
val df = Seq(
(Array(1, 2, 3), Array(1, 2, 3)),
(Array(2, 3, 4), Array(2, 3, 4))
).toDF()
val expectedAnswer = Seq(
Seq("_1", "_2"),
Seq("[1, 2, 3]", "[1, 2, 3]"),
Seq("[2, 3, 4]", "[2, 3, 4]"))
assert(df.getRows(10, 20) === expectedAnswer)
}

test("getRows: binary") {
val df = Seq(
("12".getBytes(StandardCharsets.UTF_8), "ABC.".getBytes(StandardCharsets.UTF_8)),
("34".getBytes(StandardCharsets.UTF_8), "12346".getBytes(StandardCharsets.UTF_8))
).toDF()
val expectedAnswer = Seq(
Seq("_1", "_2"),
Seq("[31 32]", "[41 42 43 2E]"),
Seq("[33 34]", "[31 32 33 34 36]"))
assert(df.getRows(10, 20) === expectedAnswer)
}

test("showString: truncate = [0, 20]") {
val longString = Array.fill(21)("1").mkString
val df = sparkContext.parallelize(Seq("1", longString)).toDF()
Expand Down