Skip to content

Conversation

@liancheng
Copy link
Contributor

When parquet.task.side.metadata is set to true, skip row group information while reading Parquet file footers. Also, this PR uses ParquetFileReader.readAllFootersInParallel to read all footers in parallel.

  • Micro benchmark

Review on Reviewable

@SparkQA
Copy link

SparkQA commented Apr 2, 2015

Test build #29618 has started for PR 5334 at commit 6e47c51.

Copy link
Contributor

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

I think the advantage to making this a Map[FileStatus, Footer] is that if the file changes the cache is automatically invalidated. Though perhaps this does not matter if we are also caching those?

Also, I think that we need to bound the size of this, perhaps in some global way?

Copy link
Contributor Author

Choose a reason for hiding this comment

The reason will be displayed to describe this comment to others. Learn more.

FileStatus objects are also cached, so this should be OK. Bounding the size can be a good idea.

@SparkQA
Copy link

SparkQA commented Apr 2, 2015

Test build #29618 has finished for PR 5334 at commit 6e47c51.

  • This patch passes all tests.
  • This patch merges cleanly.
  • This patch adds no public classes.
  • This patch does not change any dependencies.

@AmplabJenkins
Copy link

Test PASSed.
Refer to this link for build results (access rights to CI server needed):
https://amplab.cs.berkeley.edu/jenkins//job/SparkPullRequestBuilder/29618/
Test PASSed.

@SparkQA
Copy link

SparkQA commented Apr 11, 2015

Test build #30074 has started for PR 5334 at commit ac1c490.

@SparkQA
Copy link

SparkQA commented Apr 11, 2015

Test build #30074 has finished for PR 5334 at commit ac1c490.

  • This patch passes all tests.
  • This patch merges cleanly.
  • This patch adds no public classes.
  • This patch does not change any dependencies.

@AmplabJenkins
Copy link

Test PASSed.
Refer to this link for build results (access rights to CI server needed):
https://amplab.cs.berkeley.edu/jenkins//job/SparkPullRequestBuilder/30074/
Test PASSed.

asfgit pushed a commit that referenced this pull request May 18, 2015
…ance optimizations

This PR introduces several performance optimizations to `HadoopFsRelation` and `ParquetRelation2`:

1.  Moving `FileStatus` listing from `DataSourceStrategy` into a cache within `HadoopFsRelation`.

    This new cache generalizes and replaces the one used in `ParquetRelation2`.

    This also introduces an interface change: to reuse cached `FileStatus` objects, `HadoopFsRelation.buildScan` methods now receive `Array[FileStatus]` instead of `Array[String]`.

1.  When Parquet task side metadata reading is enabled, skip reading row group information when reading Parquet footers.

    This is basically what PR #5334 does. Also, now we uses `ParquetFileReader.readAllFootersInParallel` to read footers in parallel.

Another optimization in question is, instead of asking `HadoopFsRelation.buildScan` to return an `RDD[Row]` for a single selected partition and then union them all, we ask it to return an `RDD[Row]` for all selected partitions. This optimization is based on the fact that Hadoop configuration broadcasting used in `NewHadoopRDD` takes 34% time in the following microbenchmark.  However, this complicates data source user code because user code must merge partition values manually.

To check the cost of broadcasting in `NewHadoopRDD`, I also did microbenchmark after removing the `broadcast` call in `NewHadoopRDD`.  All results are shown below.

### Microbenchmark

#### Preparation code

Generating a partitioned table with 50k partitions, 1k rows per partition:

```scala
import sqlContext._
import sqlContext.implicits._

for (n <- 0 until 500) {
  val data = for {
    p <- (n * 10) until ((n + 1) * 10)
    i <- 0 until 1000
  } yield (i, f"val_$i%04d", f"$p%04d")

  data.
    toDF("a", "b", "p").
    write.
    partitionBy("p").
    mode("append").
    parquet(path)
}
```

#### Benchmarking code

```scala
import sqlContext._
import sqlContext.implicits._

import org.apache.spark.sql.types._
import com.google.common.base.Stopwatch

val path = "hdfs://localhost:9000/user/lian/5k"

def benchmark(n: Int)(f: => Unit) {
  val stopwatch = new Stopwatch()

  def run() = {
    stopwatch.reset()
    stopwatch.start()
    f
    stopwatch.stop()
    stopwatch.elapsedMillis()
  }

  val records = (0 until n).map(_ => run())

  (0 until n).foreach(i => println(s"Round $i: ${records(i)} ms"))
  println(s"Average: ${records.sum / n.toDouble} ms")
}

benchmark(3) { read.parquet(path).explain(extended = true) }
```

#### Results

Before:

```
Round 0: 72528 ms
Round 1: 68938 ms
Round 2: 65372 ms
Average: 68946.0 ms
```

After:

```
Round 0: 59499 ms
Round 1: 53645 ms
Round 2: 53844 ms
Round 3: 49093 ms
Round 4: 50555 ms
Average: 53327.2 ms
```

Also removing Hadoop configuration broadcasting:

(Note that I was testing on a local laptop, thus network cost is pretty low.)

```
Round 0: 15806 ms
Round 1: 14394 ms
Round 2: 14699 ms
Round 3: 15334 ms
Round 4: 14123 ms
Average: 14871.2 ms
```

Author: Cheng Lian <[email protected]>

Closes #6225 from liancheng/spark-7673 and squashes the following commits:

2d58a2b [Cheng Lian] Skips reading row group information when using task side metadata reading
7aa3748 [Cheng Lian] Optimizes FileStatusCache by introducing a map from parent directories to child files
ba41250 [Cheng Lian] Reuses HadoopFsRelation FileStatusCache in ParquetRelation2
3d278f7 [Cheng Lian] Fixes a bug when reading a single Parquet data file
b84612a [Cheng Lian] Fixes Scala style issue
6a08b02 [Cheng Lian] WIP: Moves file status cache into HadoopFSRelation
asfgit pushed a commit that referenced this pull request May 18, 2015
…ance optimizations

This PR introduces several performance optimizations to `HadoopFsRelation` and `ParquetRelation2`:

1.  Moving `FileStatus` listing from `DataSourceStrategy` into a cache within `HadoopFsRelation`.

    This new cache generalizes and replaces the one used in `ParquetRelation2`.

    This also introduces an interface change: to reuse cached `FileStatus` objects, `HadoopFsRelation.buildScan` methods now receive `Array[FileStatus]` instead of `Array[String]`.

1.  When Parquet task side metadata reading is enabled, skip reading row group information when reading Parquet footers.

    This is basically what PR #5334 does. Also, now we uses `ParquetFileReader.readAllFootersInParallel` to read footers in parallel.

Another optimization in question is, instead of asking `HadoopFsRelation.buildScan` to return an `RDD[Row]` for a single selected partition and then union them all, we ask it to return an `RDD[Row]` for all selected partitions. This optimization is based on the fact that Hadoop configuration broadcasting used in `NewHadoopRDD` takes 34% time in the following microbenchmark.  However, this complicates data source user code because user code must merge partition values manually.

To check the cost of broadcasting in `NewHadoopRDD`, I also did microbenchmark after removing the `broadcast` call in `NewHadoopRDD`.  All results are shown below.

### Microbenchmark

#### Preparation code

Generating a partitioned table with 50k partitions, 1k rows per partition:

```scala
import sqlContext._
import sqlContext.implicits._

for (n <- 0 until 500) {
  val data = for {
    p <- (n * 10) until ((n + 1) * 10)
    i <- 0 until 1000
  } yield (i, f"val_$i%04d", f"$p%04d")

  data.
    toDF("a", "b", "p").
    write.
    partitionBy("p").
    mode("append").
    parquet(path)
}
```

#### Benchmarking code

```scala
import sqlContext._
import sqlContext.implicits._

import org.apache.spark.sql.types._
import com.google.common.base.Stopwatch

val path = "hdfs://localhost:9000/user/lian/5k"

def benchmark(n: Int)(f: => Unit) {
  val stopwatch = new Stopwatch()

  def run() = {
    stopwatch.reset()
    stopwatch.start()
    f
    stopwatch.stop()
    stopwatch.elapsedMillis()
  }

  val records = (0 until n).map(_ => run())

  (0 until n).foreach(i => println(s"Round $i: ${records(i)} ms"))
  println(s"Average: ${records.sum / n.toDouble} ms")
}

benchmark(3) { read.parquet(path).explain(extended = true) }
```

#### Results

Before:

```
Round 0: 72528 ms
Round 1: 68938 ms
Round 2: 65372 ms
Average: 68946.0 ms
```

After:

```
Round 0: 59499 ms
Round 1: 53645 ms
Round 2: 53844 ms
Round 3: 49093 ms
Round 4: 50555 ms
Average: 53327.2 ms
```

Also removing Hadoop configuration broadcasting:

(Note that I was testing on a local laptop, thus network cost is pretty low.)

```
Round 0: 15806 ms
Round 1: 14394 ms
Round 2: 14699 ms
Round 3: 15334 ms
Round 4: 14123 ms
Average: 14871.2 ms
```

Author: Cheng Lian <[email protected]>

Closes #6225 from liancheng/spark-7673 and squashes the following commits:

2d58a2b [Cheng Lian] Skips reading row group information when using task side metadata reading
7aa3748 [Cheng Lian] Optimizes FileStatusCache by introducing a map from parent directories to child files
ba41250 [Cheng Lian] Reuses HadoopFsRelation FileStatusCache in ParquetRelation2
3d278f7 [Cheng Lian] Fixes a bug when reading a single Parquet data file
b84612a [Cheng Lian] Fixes Scala style issue
6a08b02 [Cheng Lian] WIP: Moves file status cache into HadoopFSRelation

(cherry picked from commit 9dadf01)
Signed-off-by: Yin Huai <[email protected]>
@liancheng
Copy link
Contributor Author

Closing this as it's superseded by #6225.

@liancheng liancheng closed this May 19, 2015
@liancheng liancheng deleted the parquet-footers branch May 19, 2015 09:40
jeanlyn pushed a commit to jeanlyn/spark that referenced this pull request May 28, 2015
…ance optimizations

This PR introduces several performance optimizations to `HadoopFsRelation` and `ParquetRelation2`:

1.  Moving `FileStatus` listing from `DataSourceStrategy` into a cache within `HadoopFsRelation`.

    This new cache generalizes and replaces the one used in `ParquetRelation2`.

    This also introduces an interface change: to reuse cached `FileStatus` objects, `HadoopFsRelation.buildScan` methods now receive `Array[FileStatus]` instead of `Array[String]`.

1.  When Parquet task side metadata reading is enabled, skip reading row group information when reading Parquet footers.

    This is basically what PR apache#5334 does. Also, now we uses `ParquetFileReader.readAllFootersInParallel` to read footers in parallel.

Another optimization in question is, instead of asking `HadoopFsRelation.buildScan` to return an `RDD[Row]` for a single selected partition and then union them all, we ask it to return an `RDD[Row]` for all selected partitions. This optimization is based on the fact that Hadoop configuration broadcasting used in `NewHadoopRDD` takes 34% time in the following microbenchmark.  However, this complicates data source user code because user code must merge partition values manually.

To check the cost of broadcasting in `NewHadoopRDD`, I also did microbenchmark after removing the `broadcast` call in `NewHadoopRDD`.  All results are shown below.

### Microbenchmark

#### Preparation code

Generating a partitioned table with 50k partitions, 1k rows per partition:

```scala
import sqlContext._
import sqlContext.implicits._

for (n <- 0 until 500) {
  val data = for {
    p <- (n * 10) until ((n + 1) * 10)
    i <- 0 until 1000
  } yield (i, f"val_$i%04d", f"$p%04d")

  data.
    toDF("a", "b", "p").
    write.
    partitionBy("p").
    mode("append").
    parquet(path)
}
```

#### Benchmarking code

```scala
import sqlContext._
import sqlContext.implicits._

import org.apache.spark.sql.types._
import com.google.common.base.Stopwatch

val path = "hdfs://localhost:9000/user/lian/5k"

def benchmark(n: Int)(f: => Unit) {
  val stopwatch = new Stopwatch()

  def run() = {
    stopwatch.reset()
    stopwatch.start()
    f
    stopwatch.stop()
    stopwatch.elapsedMillis()
  }

  val records = (0 until n).map(_ => run())

  (0 until n).foreach(i => println(s"Round $i: ${records(i)} ms"))
  println(s"Average: ${records.sum / n.toDouble} ms")
}

benchmark(3) { read.parquet(path).explain(extended = true) }
```

#### Results

Before:

```
Round 0: 72528 ms
Round 1: 68938 ms
Round 2: 65372 ms
Average: 68946.0 ms
```

After:

```
Round 0: 59499 ms
Round 1: 53645 ms
Round 2: 53844 ms
Round 3: 49093 ms
Round 4: 50555 ms
Average: 53327.2 ms
```

Also removing Hadoop configuration broadcasting:

(Note that I was testing on a local laptop, thus network cost is pretty low.)

```
Round 0: 15806 ms
Round 1: 14394 ms
Round 2: 14699 ms
Round 3: 15334 ms
Round 4: 14123 ms
Average: 14871.2 ms
```

Author: Cheng Lian <[email protected]>

Closes apache#6225 from liancheng/spark-7673 and squashes the following commits:

2d58a2b [Cheng Lian] Skips reading row group information when using task side metadata reading
7aa3748 [Cheng Lian] Optimizes FileStatusCache by introducing a map from parent directories to child files
ba41250 [Cheng Lian] Reuses HadoopFsRelation FileStatusCache in ParquetRelation2
3d278f7 [Cheng Lian] Fixes a bug when reading a single Parquet data file
b84612a [Cheng Lian] Fixes Scala style issue
6a08b02 [Cheng Lian] WIP: Moves file status cache into HadoopFSRelation
jeanlyn pushed a commit to jeanlyn/spark that referenced this pull request Jun 12, 2015
…ance optimizations

This PR introduces several performance optimizations to `HadoopFsRelation` and `ParquetRelation2`:

1.  Moving `FileStatus` listing from `DataSourceStrategy` into a cache within `HadoopFsRelation`.

    This new cache generalizes and replaces the one used in `ParquetRelation2`.

    This also introduces an interface change: to reuse cached `FileStatus` objects, `HadoopFsRelation.buildScan` methods now receive `Array[FileStatus]` instead of `Array[String]`.

1.  When Parquet task side metadata reading is enabled, skip reading row group information when reading Parquet footers.

    This is basically what PR apache#5334 does. Also, now we uses `ParquetFileReader.readAllFootersInParallel` to read footers in parallel.

Another optimization in question is, instead of asking `HadoopFsRelation.buildScan` to return an `RDD[Row]` for a single selected partition and then union them all, we ask it to return an `RDD[Row]` for all selected partitions. This optimization is based on the fact that Hadoop configuration broadcasting used in `NewHadoopRDD` takes 34% time in the following microbenchmark.  However, this complicates data source user code because user code must merge partition values manually.

To check the cost of broadcasting in `NewHadoopRDD`, I also did microbenchmark after removing the `broadcast` call in `NewHadoopRDD`.  All results are shown below.

### Microbenchmark

#### Preparation code

Generating a partitioned table with 50k partitions, 1k rows per partition:

```scala
import sqlContext._
import sqlContext.implicits._

for (n <- 0 until 500) {
  val data = for {
    p <- (n * 10) until ((n + 1) * 10)
    i <- 0 until 1000
  } yield (i, f"val_$i%04d", f"$p%04d")

  data.
    toDF("a", "b", "p").
    write.
    partitionBy("p").
    mode("append").
    parquet(path)
}
```

#### Benchmarking code

```scala
import sqlContext._
import sqlContext.implicits._

import org.apache.spark.sql.types._
import com.google.common.base.Stopwatch

val path = "hdfs://localhost:9000/user/lian/5k"

def benchmark(n: Int)(f: => Unit) {
  val stopwatch = new Stopwatch()

  def run() = {
    stopwatch.reset()
    stopwatch.start()
    f
    stopwatch.stop()
    stopwatch.elapsedMillis()
  }

  val records = (0 until n).map(_ => run())

  (0 until n).foreach(i => println(s"Round $i: ${records(i)} ms"))
  println(s"Average: ${records.sum / n.toDouble} ms")
}

benchmark(3) { read.parquet(path).explain(extended = true) }
```

#### Results

Before:

```
Round 0: 72528 ms
Round 1: 68938 ms
Round 2: 65372 ms
Average: 68946.0 ms
```

After:

```
Round 0: 59499 ms
Round 1: 53645 ms
Round 2: 53844 ms
Round 3: 49093 ms
Round 4: 50555 ms
Average: 53327.2 ms
```

Also removing Hadoop configuration broadcasting:

(Note that I was testing on a local laptop, thus network cost is pretty low.)

```
Round 0: 15806 ms
Round 1: 14394 ms
Round 2: 14699 ms
Round 3: 15334 ms
Round 4: 14123 ms
Average: 14871.2 ms
```

Author: Cheng Lian <[email protected]>

Closes apache#6225 from liancheng/spark-7673 and squashes the following commits:

2d58a2b [Cheng Lian] Skips reading row group information when using task side metadata reading
7aa3748 [Cheng Lian] Optimizes FileStatusCache by introducing a map from parent directories to child files
ba41250 [Cheng Lian] Reuses HadoopFsRelation FileStatusCache in ParquetRelation2
3d278f7 [Cheng Lian] Fixes a bug when reading a single Parquet data file
b84612a [Cheng Lian] Fixes Scala style issue
6a08b02 [Cheng Lian] WIP: Moves file status cache into HadoopFSRelation
nemccarthy pushed a commit to nemccarthy/spark that referenced this pull request Jun 19, 2015
…ance optimizations

This PR introduces several performance optimizations to `HadoopFsRelation` and `ParquetRelation2`:

1.  Moving `FileStatus` listing from `DataSourceStrategy` into a cache within `HadoopFsRelation`.

    This new cache generalizes and replaces the one used in `ParquetRelation2`.

    This also introduces an interface change: to reuse cached `FileStatus` objects, `HadoopFsRelation.buildScan` methods now receive `Array[FileStatus]` instead of `Array[String]`.

1.  When Parquet task side metadata reading is enabled, skip reading row group information when reading Parquet footers.

    This is basically what PR apache#5334 does. Also, now we uses `ParquetFileReader.readAllFootersInParallel` to read footers in parallel.

Another optimization in question is, instead of asking `HadoopFsRelation.buildScan` to return an `RDD[Row]` for a single selected partition and then union them all, we ask it to return an `RDD[Row]` for all selected partitions. This optimization is based on the fact that Hadoop configuration broadcasting used in `NewHadoopRDD` takes 34% time in the following microbenchmark.  However, this complicates data source user code because user code must merge partition values manually.

To check the cost of broadcasting in `NewHadoopRDD`, I also did microbenchmark after removing the `broadcast` call in `NewHadoopRDD`.  All results are shown below.

### Microbenchmark

#### Preparation code

Generating a partitioned table with 50k partitions, 1k rows per partition:

```scala
import sqlContext._
import sqlContext.implicits._

for (n <- 0 until 500) {
  val data = for {
    p <- (n * 10) until ((n + 1) * 10)
    i <- 0 until 1000
  } yield (i, f"val_$i%04d", f"$p%04d")

  data.
    toDF("a", "b", "p").
    write.
    partitionBy("p").
    mode("append").
    parquet(path)
}
```

#### Benchmarking code

```scala
import sqlContext._
import sqlContext.implicits._

import org.apache.spark.sql.types._
import com.google.common.base.Stopwatch

val path = "hdfs://localhost:9000/user/lian/5k"

def benchmark(n: Int)(f: => Unit) {
  val stopwatch = new Stopwatch()

  def run() = {
    stopwatch.reset()
    stopwatch.start()
    f
    stopwatch.stop()
    stopwatch.elapsedMillis()
  }

  val records = (0 until n).map(_ => run())

  (0 until n).foreach(i => println(s"Round $i: ${records(i)} ms"))
  println(s"Average: ${records.sum / n.toDouble} ms")
}

benchmark(3) { read.parquet(path).explain(extended = true) }
```

#### Results

Before:

```
Round 0: 72528 ms
Round 1: 68938 ms
Round 2: 65372 ms
Average: 68946.0 ms
```

After:

```
Round 0: 59499 ms
Round 1: 53645 ms
Round 2: 53844 ms
Round 3: 49093 ms
Round 4: 50555 ms
Average: 53327.2 ms
```

Also removing Hadoop configuration broadcasting:

(Note that I was testing on a local laptop, thus network cost is pretty low.)

```
Round 0: 15806 ms
Round 1: 14394 ms
Round 2: 14699 ms
Round 3: 15334 ms
Round 4: 14123 ms
Average: 14871.2 ms
```

Author: Cheng Lian <[email protected]>

Closes apache#6225 from liancheng/spark-7673 and squashes the following commits:

2d58a2b [Cheng Lian] Skips reading row group information when using task side metadata reading
7aa3748 [Cheng Lian] Optimizes FileStatusCache by introducing a map from parent directories to child files
ba41250 [Cheng Lian] Reuses HadoopFsRelation FileStatusCache in ParquetRelation2
3d278f7 [Cheng Lian] Fixes a bug when reading a single Parquet data file
b84612a [Cheng Lian] Fixes Scala style issue
6a08b02 [Cheng Lian] WIP: Moves file status cache into HadoopFSRelation
Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment

Labels

None yet

Projects

None yet

Development

Successfully merging this pull request may close these issues.

4 participants