-
Notifications
You must be signed in to change notification settings - Fork 28.9k
[SQL] [WIP] Tries to skip row groups when reading footers #5334
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
|
Test build #29618 has started for PR 5334 at commit |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
I think the advantage to making this a Map[FileStatus, Footer] is that if the file changes the cache is automatically invalidated. Though perhaps this does not matter if we are also caching those?
Also, I think that we need to bound the size of this, perhaps in some global way?
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
FileStatus objects are also cached, so this should be OK. Bounding the size can be a good idea.
|
Test build #29618 has finished for PR 5334 at commit
|
|
Test PASSed. |
|
Test build #30074 has started for PR 5334 at commit |
|
Test build #30074 has finished for PR 5334 at commit
|
|
Test PASSed. |
…ance optimizations
This PR introduces several performance optimizations to `HadoopFsRelation` and `ParquetRelation2`:
1. Moving `FileStatus` listing from `DataSourceStrategy` into a cache within `HadoopFsRelation`.
This new cache generalizes and replaces the one used in `ParquetRelation2`.
This also introduces an interface change: to reuse cached `FileStatus` objects, `HadoopFsRelation.buildScan` methods now receive `Array[FileStatus]` instead of `Array[String]`.
1. When Parquet task side metadata reading is enabled, skip reading row group information when reading Parquet footers.
This is basically what PR #5334 does. Also, now we uses `ParquetFileReader.readAllFootersInParallel` to read footers in parallel.
Another optimization in question is, instead of asking `HadoopFsRelation.buildScan` to return an `RDD[Row]` for a single selected partition and then union them all, we ask it to return an `RDD[Row]` for all selected partitions. This optimization is based on the fact that Hadoop configuration broadcasting used in `NewHadoopRDD` takes 34% time in the following microbenchmark. However, this complicates data source user code because user code must merge partition values manually.
To check the cost of broadcasting in `NewHadoopRDD`, I also did microbenchmark after removing the `broadcast` call in `NewHadoopRDD`. All results are shown below.
### Microbenchmark
#### Preparation code
Generating a partitioned table with 50k partitions, 1k rows per partition:
```scala
import sqlContext._
import sqlContext.implicits._
for (n <- 0 until 500) {
val data = for {
p <- (n * 10) until ((n + 1) * 10)
i <- 0 until 1000
} yield (i, f"val_$i%04d", f"$p%04d")
data.
toDF("a", "b", "p").
write.
partitionBy("p").
mode("append").
parquet(path)
}
```
#### Benchmarking code
```scala
import sqlContext._
import sqlContext.implicits._
import org.apache.spark.sql.types._
import com.google.common.base.Stopwatch
val path = "hdfs://localhost:9000/user/lian/5k"
def benchmark(n: Int)(f: => Unit) {
val stopwatch = new Stopwatch()
def run() = {
stopwatch.reset()
stopwatch.start()
f
stopwatch.stop()
stopwatch.elapsedMillis()
}
val records = (0 until n).map(_ => run())
(0 until n).foreach(i => println(s"Round $i: ${records(i)} ms"))
println(s"Average: ${records.sum / n.toDouble} ms")
}
benchmark(3) { read.parquet(path).explain(extended = true) }
```
#### Results
Before:
```
Round 0: 72528 ms
Round 1: 68938 ms
Round 2: 65372 ms
Average: 68946.0 ms
```
After:
```
Round 0: 59499 ms
Round 1: 53645 ms
Round 2: 53844 ms
Round 3: 49093 ms
Round 4: 50555 ms
Average: 53327.2 ms
```
Also removing Hadoop configuration broadcasting:
(Note that I was testing on a local laptop, thus network cost is pretty low.)
```
Round 0: 15806 ms
Round 1: 14394 ms
Round 2: 14699 ms
Round 3: 15334 ms
Round 4: 14123 ms
Average: 14871.2 ms
```
Author: Cheng Lian <[email protected]>
Closes #6225 from liancheng/spark-7673 and squashes the following commits:
2d58a2b [Cheng Lian] Skips reading row group information when using task side metadata reading
7aa3748 [Cheng Lian] Optimizes FileStatusCache by introducing a map from parent directories to child files
ba41250 [Cheng Lian] Reuses HadoopFsRelation FileStatusCache in ParquetRelation2
3d278f7 [Cheng Lian] Fixes a bug when reading a single Parquet data file
b84612a [Cheng Lian] Fixes Scala style issue
6a08b02 [Cheng Lian] WIP: Moves file status cache into HadoopFSRelation
…ance optimizations
This PR introduces several performance optimizations to `HadoopFsRelation` and `ParquetRelation2`:
1. Moving `FileStatus` listing from `DataSourceStrategy` into a cache within `HadoopFsRelation`.
This new cache generalizes and replaces the one used in `ParquetRelation2`.
This also introduces an interface change: to reuse cached `FileStatus` objects, `HadoopFsRelation.buildScan` methods now receive `Array[FileStatus]` instead of `Array[String]`.
1. When Parquet task side metadata reading is enabled, skip reading row group information when reading Parquet footers.
This is basically what PR #5334 does. Also, now we uses `ParquetFileReader.readAllFootersInParallel` to read footers in parallel.
Another optimization in question is, instead of asking `HadoopFsRelation.buildScan` to return an `RDD[Row]` for a single selected partition and then union them all, we ask it to return an `RDD[Row]` for all selected partitions. This optimization is based on the fact that Hadoop configuration broadcasting used in `NewHadoopRDD` takes 34% time in the following microbenchmark. However, this complicates data source user code because user code must merge partition values manually.
To check the cost of broadcasting in `NewHadoopRDD`, I also did microbenchmark after removing the `broadcast` call in `NewHadoopRDD`. All results are shown below.
### Microbenchmark
#### Preparation code
Generating a partitioned table with 50k partitions, 1k rows per partition:
```scala
import sqlContext._
import sqlContext.implicits._
for (n <- 0 until 500) {
val data = for {
p <- (n * 10) until ((n + 1) * 10)
i <- 0 until 1000
} yield (i, f"val_$i%04d", f"$p%04d")
data.
toDF("a", "b", "p").
write.
partitionBy("p").
mode("append").
parquet(path)
}
```
#### Benchmarking code
```scala
import sqlContext._
import sqlContext.implicits._
import org.apache.spark.sql.types._
import com.google.common.base.Stopwatch
val path = "hdfs://localhost:9000/user/lian/5k"
def benchmark(n: Int)(f: => Unit) {
val stopwatch = new Stopwatch()
def run() = {
stopwatch.reset()
stopwatch.start()
f
stopwatch.stop()
stopwatch.elapsedMillis()
}
val records = (0 until n).map(_ => run())
(0 until n).foreach(i => println(s"Round $i: ${records(i)} ms"))
println(s"Average: ${records.sum / n.toDouble} ms")
}
benchmark(3) { read.parquet(path).explain(extended = true) }
```
#### Results
Before:
```
Round 0: 72528 ms
Round 1: 68938 ms
Round 2: 65372 ms
Average: 68946.0 ms
```
After:
```
Round 0: 59499 ms
Round 1: 53645 ms
Round 2: 53844 ms
Round 3: 49093 ms
Round 4: 50555 ms
Average: 53327.2 ms
```
Also removing Hadoop configuration broadcasting:
(Note that I was testing on a local laptop, thus network cost is pretty low.)
```
Round 0: 15806 ms
Round 1: 14394 ms
Round 2: 14699 ms
Round 3: 15334 ms
Round 4: 14123 ms
Average: 14871.2 ms
```
Author: Cheng Lian <[email protected]>
Closes #6225 from liancheng/spark-7673 and squashes the following commits:
2d58a2b [Cheng Lian] Skips reading row group information when using task side metadata reading
7aa3748 [Cheng Lian] Optimizes FileStatusCache by introducing a map from parent directories to child files
ba41250 [Cheng Lian] Reuses HadoopFsRelation FileStatusCache in ParquetRelation2
3d278f7 [Cheng Lian] Fixes a bug when reading a single Parquet data file
b84612a [Cheng Lian] Fixes Scala style issue
6a08b02 [Cheng Lian] WIP: Moves file status cache into HadoopFSRelation
(cherry picked from commit 9dadf01)
Signed-off-by: Yin Huai <[email protected]>
|
Closing this as it's superseded by #6225. |
…ance optimizations
This PR introduces several performance optimizations to `HadoopFsRelation` and `ParquetRelation2`:
1. Moving `FileStatus` listing from `DataSourceStrategy` into a cache within `HadoopFsRelation`.
This new cache generalizes and replaces the one used in `ParquetRelation2`.
This also introduces an interface change: to reuse cached `FileStatus` objects, `HadoopFsRelation.buildScan` methods now receive `Array[FileStatus]` instead of `Array[String]`.
1. When Parquet task side metadata reading is enabled, skip reading row group information when reading Parquet footers.
This is basically what PR apache#5334 does. Also, now we uses `ParquetFileReader.readAllFootersInParallel` to read footers in parallel.
Another optimization in question is, instead of asking `HadoopFsRelation.buildScan` to return an `RDD[Row]` for a single selected partition and then union them all, we ask it to return an `RDD[Row]` for all selected partitions. This optimization is based on the fact that Hadoop configuration broadcasting used in `NewHadoopRDD` takes 34% time in the following microbenchmark. However, this complicates data source user code because user code must merge partition values manually.
To check the cost of broadcasting in `NewHadoopRDD`, I also did microbenchmark after removing the `broadcast` call in `NewHadoopRDD`. All results are shown below.
### Microbenchmark
#### Preparation code
Generating a partitioned table with 50k partitions, 1k rows per partition:
```scala
import sqlContext._
import sqlContext.implicits._
for (n <- 0 until 500) {
val data = for {
p <- (n * 10) until ((n + 1) * 10)
i <- 0 until 1000
} yield (i, f"val_$i%04d", f"$p%04d")
data.
toDF("a", "b", "p").
write.
partitionBy("p").
mode("append").
parquet(path)
}
```
#### Benchmarking code
```scala
import sqlContext._
import sqlContext.implicits._
import org.apache.spark.sql.types._
import com.google.common.base.Stopwatch
val path = "hdfs://localhost:9000/user/lian/5k"
def benchmark(n: Int)(f: => Unit) {
val stopwatch = new Stopwatch()
def run() = {
stopwatch.reset()
stopwatch.start()
f
stopwatch.stop()
stopwatch.elapsedMillis()
}
val records = (0 until n).map(_ => run())
(0 until n).foreach(i => println(s"Round $i: ${records(i)} ms"))
println(s"Average: ${records.sum / n.toDouble} ms")
}
benchmark(3) { read.parquet(path).explain(extended = true) }
```
#### Results
Before:
```
Round 0: 72528 ms
Round 1: 68938 ms
Round 2: 65372 ms
Average: 68946.0 ms
```
After:
```
Round 0: 59499 ms
Round 1: 53645 ms
Round 2: 53844 ms
Round 3: 49093 ms
Round 4: 50555 ms
Average: 53327.2 ms
```
Also removing Hadoop configuration broadcasting:
(Note that I was testing on a local laptop, thus network cost is pretty low.)
```
Round 0: 15806 ms
Round 1: 14394 ms
Round 2: 14699 ms
Round 3: 15334 ms
Round 4: 14123 ms
Average: 14871.2 ms
```
Author: Cheng Lian <[email protected]>
Closes apache#6225 from liancheng/spark-7673 and squashes the following commits:
2d58a2b [Cheng Lian] Skips reading row group information when using task side metadata reading
7aa3748 [Cheng Lian] Optimizes FileStatusCache by introducing a map from parent directories to child files
ba41250 [Cheng Lian] Reuses HadoopFsRelation FileStatusCache in ParquetRelation2
3d278f7 [Cheng Lian] Fixes a bug when reading a single Parquet data file
b84612a [Cheng Lian] Fixes Scala style issue
6a08b02 [Cheng Lian] WIP: Moves file status cache into HadoopFSRelation
…ance optimizations
This PR introduces several performance optimizations to `HadoopFsRelation` and `ParquetRelation2`:
1. Moving `FileStatus` listing from `DataSourceStrategy` into a cache within `HadoopFsRelation`.
This new cache generalizes and replaces the one used in `ParquetRelation2`.
This also introduces an interface change: to reuse cached `FileStatus` objects, `HadoopFsRelation.buildScan` methods now receive `Array[FileStatus]` instead of `Array[String]`.
1. When Parquet task side metadata reading is enabled, skip reading row group information when reading Parquet footers.
This is basically what PR apache#5334 does. Also, now we uses `ParquetFileReader.readAllFootersInParallel` to read footers in parallel.
Another optimization in question is, instead of asking `HadoopFsRelation.buildScan` to return an `RDD[Row]` for a single selected partition and then union them all, we ask it to return an `RDD[Row]` for all selected partitions. This optimization is based on the fact that Hadoop configuration broadcasting used in `NewHadoopRDD` takes 34% time in the following microbenchmark. However, this complicates data source user code because user code must merge partition values manually.
To check the cost of broadcasting in `NewHadoopRDD`, I also did microbenchmark after removing the `broadcast` call in `NewHadoopRDD`. All results are shown below.
### Microbenchmark
#### Preparation code
Generating a partitioned table with 50k partitions, 1k rows per partition:
```scala
import sqlContext._
import sqlContext.implicits._
for (n <- 0 until 500) {
val data = for {
p <- (n * 10) until ((n + 1) * 10)
i <- 0 until 1000
} yield (i, f"val_$i%04d", f"$p%04d")
data.
toDF("a", "b", "p").
write.
partitionBy("p").
mode("append").
parquet(path)
}
```
#### Benchmarking code
```scala
import sqlContext._
import sqlContext.implicits._
import org.apache.spark.sql.types._
import com.google.common.base.Stopwatch
val path = "hdfs://localhost:9000/user/lian/5k"
def benchmark(n: Int)(f: => Unit) {
val stopwatch = new Stopwatch()
def run() = {
stopwatch.reset()
stopwatch.start()
f
stopwatch.stop()
stopwatch.elapsedMillis()
}
val records = (0 until n).map(_ => run())
(0 until n).foreach(i => println(s"Round $i: ${records(i)} ms"))
println(s"Average: ${records.sum / n.toDouble} ms")
}
benchmark(3) { read.parquet(path).explain(extended = true) }
```
#### Results
Before:
```
Round 0: 72528 ms
Round 1: 68938 ms
Round 2: 65372 ms
Average: 68946.0 ms
```
After:
```
Round 0: 59499 ms
Round 1: 53645 ms
Round 2: 53844 ms
Round 3: 49093 ms
Round 4: 50555 ms
Average: 53327.2 ms
```
Also removing Hadoop configuration broadcasting:
(Note that I was testing on a local laptop, thus network cost is pretty low.)
```
Round 0: 15806 ms
Round 1: 14394 ms
Round 2: 14699 ms
Round 3: 15334 ms
Round 4: 14123 ms
Average: 14871.2 ms
```
Author: Cheng Lian <[email protected]>
Closes apache#6225 from liancheng/spark-7673 and squashes the following commits:
2d58a2b [Cheng Lian] Skips reading row group information when using task side metadata reading
7aa3748 [Cheng Lian] Optimizes FileStatusCache by introducing a map from parent directories to child files
ba41250 [Cheng Lian] Reuses HadoopFsRelation FileStatusCache in ParquetRelation2
3d278f7 [Cheng Lian] Fixes a bug when reading a single Parquet data file
b84612a [Cheng Lian] Fixes Scala style issue
6a08b02 [Cheng Lian] WIP: Moves file status cache into HadoopFSRelation
…ance optimizations
This PR introduces several performance optimizations to `HadoopFsRelation` and `ParquetRelation2`:
1. Moving `FileStatus` listing from `DataSourceStrategy` into a cache within `HadoopFsRelation`.
This new cache generalizes and replaces the one used in `ParquetRelation2`.
This also introduces an interface change: to reuse cached `FileStatus` objects, `HadoopFsRelation.buildScan` methods now receive `Array[FileStatus]` instead of `Array[String]`.
1. When Parquet task side metadata reading is enabled, skip reading row group information when reading Parquet footers.
This is basically what PR apache#5334 does. Also, now we uses `ParquetFileReader.readAllFootersInParallel` to read footers in parallel.
Another optimization in question is, instead of asking `HadoopFsRelation.buildScan` to return an `RDD[Row]` for a single selected partition and then union them all, we ask it to return an `RDD[Row]` for all selected partitions. This optimization is based on the fact that Hadoop configuration broadcasting used in `NewHadoopRDD` takes 34% time in the following microbenchmark. However, this complicates data source user code because user code must merge partition values manually.
To check the cost of broadcasting in `NewHadoopRDD`, I also did microbenchmark after removing the `broadcast` call in `NewHadoopRDD`. All results are shown below.
### Microbenchmark
#### Preparation code
Generating a partitioned table with 50k partitions, 1k rows per partition:
```scala
import sqlContext._
import sqlContext.implicits._
for (n <- 0 until 500) {
val data = for {
p <- (n * 10) until ((n + 1) * 10)
i <- 0 until 1000
} yield (i, f"val_$i%04d", f"$p%04d")
data.
toDF("a", "b", "p").
write.
partitionBy("p").
mode("append").
parquet(path)
}
```
#### Benchmarking code
```scala
import sqlContext._
import sqlContext.implicits._
import org.apache.spark.sql.types._
import com.google.common.base.Stopwatch
val path = "hdfs://localhost:9000/user/lian/5k"
def benchmark(n: Int)(f: => Unit) {
val stopwatch = new Stopwatch()
def run() = {
stopwatch.reset()
stopwatch.start()
f
stopwatch.stop()
stopwatch.elapsedMillis()
}
val records = (0 until n).map(_ => run())
(0 until n).foreach(i => println(s"Round $i: ${records(i)} ms"))
println(s"Average: ${records.sum / n.toDouble} ms")
}
benchmark(3) { read.parquet(path).explain(extended = true) }
```
#### Results
Before:
```
Round 0: 72528 ms
Round 1: 68938 ms
Round 2: 65372 ms
Average: 68946.0 ms
```
After:
```
Round 0: 59499 ms
Round 1: 53645 ms
Round 2: 53844 ms
Round 3: 49093 ms
Round 4: 50555 ms
Average: 53327.2 ms
```
Also removing Hadoop configuration broadcasting:
(Note that I was testing on a local laptop, thus network cost is pretty low.)
```
Round 0: 15806 ms
Round 1: 14394 ms
Round 2: 14699 ms
Round 3: 15334 ms
Round 4: 14123 ms
Average: 14871.2 ms
```
Author: Cheng Lian <[email protected]>
Closes apache#6225 from liancheng/spark-7673 and squashes the following commits:
2d58a2b [Cheng Lian] Skips reading row group information when using task side metadata reading
7aa3748 [Cheng Lian] Optimizes FileStatusCache by introducing a map from parent directories to child files
ba41250 [Cheng Lian] Reuses HadoopFsRelation FileStatusCache in ParquetRelation2
3d278f7 [Cheng Lian] Fixes a bug when reading a single Parquet data file
b84612a [Cheng Lian] Fixes Scala style issue
6a08b02 [Cheng Lian] WIP: Moves file status cache into HadoopFSRelation
When
parquet.task.side.metadatais set to true, skip row group information while reading Parquet file footers. Also, this PR usesParquetFileReader.readAllFootersInParallelto read all footers in parallel.