-
Notifications
You must be signed in to change notification settings - Fork 28.9k
Add Python includes to path before depickling broadcast values #656
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Conversation
|
Merged build triggered. |
|
Merged build started. |
|
Merged build finished. All automated tests passed. |
|
All automated tests passed. |
This fixes https://issues.apache.org/jira/browse/SPARK-1731 by adding the Python includes to the PYTHONPATH before depickling the broadcast values
|
Merged build triggered. |
|
Merged build started. |
|
Merged build finished. All automated tests passed. |
|
All automated tests passed. |
This fixes https://issues.apache.org/jira/browse/SPARK-1731 by adding the Python includes to the PYTHONPATH before depickling the broadcast values @airhorns Author: Bouke van der Bijl <[email protected]> Closes #656 from bouk/python-includes-before-broadcast and squashes the following commits: 7b0dfe4 [Bouke van der Bijl] Add Python includes to path before depickling broadcast values (cherry picked from commit 3776f2f) Signed-off-by: Patrick Wendell <[email protected]>
This fixes https://issues.apache.org/jira/browse/SPARK-1731 by adding the Python includes to the PYTHONPATH before depickling the broadcast values @airhorns Author: Bouke van der Bijl <[email protected]> Closes apache#656 from bouk/python-includes-before-broadcast and squashes the following commits: 7b0dfe4 [Bouke van der Bijl] Add Python includes to path before depickling broadcast values
…subquery reuse
### What changes were proposed in this pull request?
This PR:
1. Fixes an issue in `ReuseExchange` rule that can result a `ReusedExchange` node pointing to an invalid exchange. This can happen due to the 2 separate traversals in `ReuseExchange` when the 2nd traversal modifies an exchange that has already been referenced (reused) in the 1st traversal.
Consider the following query:
```
WITH t AS (
SELECT df1.id, df2.k
FROM df1 JOIN df2 ON df1.k = df2.k
WHERE df2.id < 2
)
SELECT * FROM t AS a JOIN t AS b ON a.id = b.id
```
Before this PR the plan of the query was (note the `<== this reuse node points to a non-existing node` marker):
```
== Physical Plan ==
*(7) SortMergeJoin [id#14L], [id#18L], Inner
:- *(3) Sort [id#14L ASC NULLS FIRST], false, 0
: +- Exchange hashpartitioning(id#14L, 5), true, [id=#298]
: +- *(2) Project [id#14L, k#17L]
: +- *(2) BroadcastHashJoin [k#15L], [k#17L], Inner, BuildRight
: :- *(2) Project [id#14L, k#15L]
: : +- *(2) Filter isnotnull(id#14L)
: : +- *(2) ColumnarToRow
: : +- FileScan parquet default.df1[id#14L,k#15L] Batched: true, DataFilters: [isnotnull(id#14L)], Format: Parquet, Location: InMemoryFileIndex[file:/Users/petertoth/git/apache/spark/sql/core/spark-warehouse/org.apache.spar..., PartitionFilters: [isnotnull(k#15L), dynamicpruningexpression(k#15L IN dynamicpruning#26)], PushedFilters: [IsNotNull(id)], ReadSchema: struct<id:bigint>
: : +- SubqueryBroadcast dynamicpruning#26, 0, [k#17L], [id=#289]
: : +- ReusedExchange [k#17L], BroadcastExchange HashedRelationBroadcastMode(List(input[0, bigint, true])), [id=#179]
: +- BroadcastExchange HashedRelationBroadcastMode(List(input[0, bigint, true])), [id=#179]
: +- *(1) Project [k#17L]
: +- *(1) Filter ((isnotnull(id#16L) AND (id#16L < 2)) AND isnotnull(k#17L))
: +- *(1) ColumnarToRow
: +- FileScan parquet default.df2[id#16L,k#17L] Batched: true, DataFilters: [isnotnull(id#16L), (id#16L < 2), isnotnull(k#17L)], Format: Parquet, Location: InMemoryFileIndex[file:/Users/petertoth/git/apache/spark/sql/core/spark-warehouse/org.apache.spar..., PartitionFilters: [], PushedFilters: [IsNotNull(id), LessThan(id,2), IsNotNull(k)], ReadSchema: struct<id:bigint,k:bigint>
+- *(6) Sort [id#18L ASC NULLS FIRST], false, 0
+- ReusedExchange [id#18L, k#21L], Exchange hashpartitioning(id#14L, 5), true, [id=#184] <== this reuse node points to a non-existing node
```
After this PR:
```
== Physical Plan ==
*(7) SortMergeJoin [id#14L], [id#18L], Inner
:- *(3) Sort [id#14L ASC NULLS FIRST], false, 0
: +- Exchange hashpartitioning(id#14L, 5), true, [id=#231]
: +- *(2) Project [id#14L, k#17L]
: +- *(2) BroadcastHashJoin [k#15L], [k#17L], Inner, BuildRight
: :- *(2) Project [id#14L, k#15L]
: : +- *(2) Filter isnotnull(id#14L)
: : +- *(2) ColumnarToRow
: : +- FileScan parquet default.df1[id#14L,k#15L] Batched: true, DataFilters: [isnotnull(id#14L)], Format: Parquet, Location: InMemoryFileIndex[file:/Users/petertoth/git/apache/spark/sql/core/spark-warehouse/org.apache.spar..., PartitionFilters: [isnotnull(k#15L), dynamicpruningexpression(k#15L IN dynamicpruning#26)], PushedFilters: [IsNotNull(id)], ReadSchema: struct<id:bigint>
: : +- SubqueryBroadcast dynamicpruning#26, 0, [k#17L], [id=#103]
: : +- BroadcastExchange HashedRelationBroadcastMode(List(input[0, bigint, true])), [id=#102]
: : +- *(1) Project [k#17L]
: : +- *(1) Filter ((isnotnull(id#16L) AND (id#16L < 2)) AND isnotnull(k#17L))
: : +- *(1) ColumnarToRow
: : +- FileScan parquet default.df2[id#16L,k#17L] Batched: true, DataFilters: [isnotnull(id#16L), (id#16L < 2), isnotnull(k#17L)], Format: Parquet, Location: InMemoryFileIndex[file:/Users/petertoth/git/apache/spark/sql/core/spark-warehouse/org.apache.spar..., PartitionFilters: [], PushedFilters: [IsNotNull(id), LessThan(id,2), IsNotNull(k)], ReadSchema: struct<id:bigint,k:bigint>
: +- ReusedExchange [k#17L], BroadcastExchange HashedRelationBroadcastMode(List(input[0, bigint, true])), [id=#102]
+- *(6) Sort [id#18L ASC NULLS FIRST], false, 0
+- ReusedExchange [id#18L, k#21L], Exchange hashpartitioning(id#14L, 5), true, [id=#231]
```
2. Fixes an issue with separate consecutive `ReuseExchange` and `ReuseSubquery` rules that can result a `ReusedExchange` node pointing to an invalid exchange. This can happen due to the 2 separate rules when `ReuseSubquery` rule modifies an exchange that has already been referenced (reused) in `ReuseExchange` rule.
Consider the following query:
```
WITH t AS (
SELECT df1.id, df2.k
FROM df1 JOIN df2 ON df1.k = df2.k
WHERE df2.id < 2
),
t2 AS (
SELECT * FROM t
UNION
SELECT * FROM t
)
SELECT * FROM t2 AS a JOIN t2 AS b ON a.id = b.id
```
Before this PR the plan of the query was (note the `<== this reuse node points to a non-existing node` marker):
```
== Physical Plan ==
*(15) SortMergeJoin [id#46L], [id#58L], Inner
:- *(7) Sort [id#46L ASC NULLS FIRST], false, 0
: +- Exchange hashpartitioning(id#46L, 5), true, [id=#979]
: +- *(6) HashAggregate(keys=[id#46L, k#49L], functions=[])
: +- Exchange hashpartitioning(id#46L, k#49L, 5), true, [id=#975]
: +- *(5) HashAggregate(keys=[id#46L, k#49L], functions=[])
: +- Union
: :- *(2) Project [id#46L, k#49L]
: : +- *(2) BroadcastHashJoin [k#47L], [k#49L], Inner, BuildRight
: : :- *(2) Project [id#46L, k#47L]
: : : +- *(2) Filter isnotnull(id#46L)
: : : +- *(2) ColumnarToRow
: : : +- FileScan parquet default.df1[id#46L,k#47L] Batched: true, DataFilters: [isnotnull(id#46L)], Format: Parquet, Location: InMemoryFileIndex[file:/Users/petertoth/git/apache/spark/sql/core/spark-warehouse/org.apache.spar..., PartitionFilters: [isnotnull(k#47L), dynamicpruningexpression(k#47L IN dynamicpruning#66)], PushedFilters: [IsNotNull(id)], ReadSchema: struct<id:bigint>
: : : +- SubqueryBroadcast dynamicpruning#66, 0, [k#49L], [id=#926]
: : : +- ReusedExchange [k#49L], BroadcastExchange HashedRelationBroadcastMode(List(input[0, bigint, true])), [id=#656]
: : +- BroadcastExchange HashedRelationBroadcastMode(List(input[0, bigint, true])), [id=#656]
: : +- *(1) Project [k#49L]
: : +- *(1) Filter ((isnotnull(id#48L) AND (id#48L < 2)) AND isnotnull(k#49L))
: : +- *(1) ColumnarToRow
: : +- FileScan parquet default.df2[id#48L,k#49L] Batched: true, DataFilters: [isnotnull(id#48L), (id#48L < 2), isnotnull(k#49L)], Format: Parquet, Location: InMemoryFileIndex[file:/Users/petertoth/git/apache/spark/sql/core/spark-warehouse/org.apache.spar..., PartitionFilters: [], PushedFilters: [IsNotNull(id), LessThan(id,2), IsNotNull(k)], ReadSchema: struct<id:bigint,k:bigint>
: +- *(4) Project [id#46L, k#49L]
: +- *(4) BroadcastHashJoin [k#47L], [k#49L], Inner, BuildRight
: :- *(4) Project [id#46L, k#47L]
: : +- *(4) Filter isnotnull(id#46L)
: : +- *(4) ColumnarToRow
: : +- FileScan parquet default.df1[id#46L,k#47L] Batched: true, DataFilters: [isnotnull(id#46L)], Format: Parquet, Location: InMemoryFileIndex[file:/Users/petertoth/git/apache/spark/sql/core/spark-warehouse/org.apache.spar..., PartitionFilters: [isnotnull(k#47L), dynamicpruningexpression(k#47L IN dynamicpruning#66)], PushedFilters: [IsNotNull(id)], ReadSchema: struct<id:bigint>
: : +- ReusedSubquery SubqueryBroadcast dynamicpruning#66, 0, [k#49L], [id=#926]
: +- ReusedExchange [k#49L], BroadcastExchange HashedRelationBroadcastMode(List(input[0, bigint, true])), [id=#656]
+- *(14) Sort [id#58L ASC NULLS FIRST], false, 0
+- ReusedExchange [id#58L, k#61L], Exchange hashpartitioning(id#46L, 5), true, [id=#761] <== this reuse node points to a non-existing node
```
After this PR:
```
== Physical Plan ==
*(15) SortMergeJoin [id#46L], [id#58L], Inner
:- *(7) Sort [id#46L ASC NULLS FIRST], false, 0
: +- Exchange hashpartitioning(id#46L, 5), true, [id=#793]
: +- *(6) HashAggregate(keys=[id#46L, k#49L], functions=[])
: +- Exchange hashpartitioning(id#46L, k#49L, 5), true, [id=#789]
: +- *(5) HashAggregate(keys=[id#46L, k#49L], functions=[])
: +- Union
: :- *(2) Project [id#46L, k#49L]
: : +- *(2) BroadcastHashJoin [k#47L], [k#49L], Inner, BuildRight
: : :- *(2) Project [id#46L, k#47L]
: : : +- *(2) Filter isnotnull(id#46L)
: : : +- *(2) ColumnarToRow
: : : +- FileScan parquet default.df1[id#46L,k#47L] Batched: true, DataFilters: [isnotnull(id#46L)], Format: Parquet, Location: InMemoryFileIndex[file:/Users/petertoth/git/apache/spark/sql/core/spark-warehouse/org.apache.spar..., PartitionFilters: [isnotnull(k#47L), dynamicpruningexpression(k#47L IN dynamicpruning#66)], PushedFilters: [IsNotNull(id)], ReadSchema: struct<id:bigint>
: : : +- SubqueryBroadcast dynamicpruning#66, 0, [k#49L], [id=#485]
: : : +- BroadcastExchange HashedRelationBroadcastMode(List(input[0, bigint, true])), [id=#484]
: : : +- *(1) Project [k#49L]
: : : +- *(1) Filter ((isnotnull(id#48L) AND (id#48L < 2)) AND isnotnull(k#49L))
: : : +- *(1) ColumnarToRow
: : : +- FileScan parquet default.df2[id#48L,k#49L] Batched: true, DataFilters: [isnotnull(id#48L), (id#48L < 2), isnotnull(k#49L)], Format: Parquet, Location: InMemoryFileIndex[file:/Users/petertoth/git/apache/spark/sql/core/spark-warehouse/org.apache.spar..., PartitionFilters: [], PushedFilters: [IsNotNull(id), LessThan(id,2), IsNotNull(k)], ReadSchema: struct<id:bigint,k:bigint>
: : +- ReusedExchange [k#49L], BroadcastExchange HashedRelationBroadcastMode(List(input[0, bigint, true])), [id=#484]
: +- *(4) Project [id#46L, k#49L]
: +- *(4) BroadcastHashJoin [k#47L], [k#49L], Inner, BuildRight
: :- *(4) Project [id#46L, k#47L]
: : +- *(4) Filter isnotnull(id#46L)
: : +- *(4) ColumnarToRow
: : +- FileScan parquet default.df1[id#46L,k#47L] Batched: true, DataFilters: [isnotnull(id#46L)], Format: Parquet, Location: InMemoryFileIndex[file:/Users/petertoth/git/apache/spark/sql/core/spark-warehouse/org.apache.spar..., PartitionFilters: [isnotnull(k#47L), dynamicpruningexpression(k#47L IN dynamicpruning#66)], PushedFilters: [IsNotNull(id)], ReadSchema: struct<id:bigint>
: : +- ReusedSubquery SubqueryBroadcast dynamicpruning#66, 0, [k#49L], [id=#485]
: +- ReusedExchange [k#49L], BroadcastExchange HashedRelationBroadcastMode(List(input[0, bigint, true])), [id=#484]
+- *(14) Sort [id#58L ASC NULLS FIRST], false, 0
+- ReusedExchange [id#58L, k#61L], Exchange hashpartitioning(id#46L, 5), true, [id=#793]
```
(This example contains issue 1 as well.)
3. Improves the reuse of exchanges and subqueries by enabling reuse across the whole plan. This means that the new combined rule utilizes the reuse opportunities between parent and subqueries by traversing the whole plan. The traversal is started on the top level query only.
4. Due to the order of traversal this PR does while adding reuse nodes, the reuse nodes appear in parent queries if reuse is possible between different levels of queries (typical for DPP). This is not an issue from execution perspective, but this also means "forward references" in explain formatted output where parent queries come first. The changes I made to `ExplainUtils` are to handle these references properly.
This PR fixes the above 3 issues by unifying the separate rules into a `ReuseExchangeAndSubquery` rule that does a 1 pass, whole-plan, bottom-up traversal.
### Why are the changes needed?
Performance improvement.
### How was this patch tested?
- New UTs in `ReuseExchangeAndSubquerySuite` to cover 1. and 2.
- New UTs in `DynamicPartitionPruningSuite`, `SubquerySuite` and `ExchangeSuite` to cover 3.
- New `ReuseMapSuite` to test `ReuseMap`.
- Checked new golden files of `PlanStabilitySuite`s for invalid reuse references.
- TPCDS benchmarks.
Closes #28885 from peter-toth/SPARK-29375-SPARK-28940-whole-plan-reuse.
Authored-by: Peter Toth <[email protected]>
Signed-off-by: Wenchen Fan <[email protected]>
This fixes https://issues.apache.org/jira/browse/SPARK-1731 by adding the Python includes to the PYTHONPATH before depickling the broadcast values
@airhorns