-
Notifications
You must be signed in to change notification settings - Fork 3.7k
Description
Thanks for participating in the TVM community! We use https://discuss.tvm.ai for any general usage questions and discussions. The issue tracker is used for actionable items such as feature proposals discussion, roadmaps, and bug tracking. You are always welcomed to post on the forum first 😸
Issues that are inactive for a period of time may get closed. We adopt this policy so that we won't lose track of actionable issues that may fall at the bottom of the pile. Feel free to reopen a new one if you feel there is an additional problem that needs attention when an old one gets closed.
Expected behavior
work well
Actual behavior
test_nonzero_numpy.py:45:
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
../../../../python/tvm/relay/frontend/pytorch.py:5418: in from_pytorch
outputs = converter.convert_operators(operator_nodes, outputs, ret_name)
../../../../python/tvm/relay/frontend/pytorch.py:4528: in convert_operators
unpacked = _unpack_tuple(inputs[0])
../../../../python/tvm/relay/frontend/pytorch.py:5137: in _unpack_tuple
elif isinstance(tup.type_annotation, TupleType):
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
self = CallNode(Op(argwhere), [Var(input1, ty=TensorType([2, 10], bool))], (nullptr), [])
name = 'type_annotation'
def __getattr__(self, name):
# specially check handle since
# this is required for PackedFunc calls
if name == "handle":
raise AttributeError("handle is not set")
try:
return _ffi_node_api.NodeGetAttr(self, name)
except AttributeError:
> raise AttributeError(f"{type(self)} has no attribute {name}") from None
E AttributeError: <class 'tvm.relay.expr.Call'> has no attribute type_annotation
Environment
os: ubuntu
python: 3.9
pytorch: 2.0
tvm: main branch
Steps to reproduce
from torch import nn
import torch
import tvm
class NonZeroModule(nn.Module):
"""Module that performs nonzero"""
def __init__(self):
super().__init__()
def forward(self, x, mask):
mask_index = torch.nonzero(mask, as_tuple=True)
x[mask_index] = torch.ones_like(x[mask_index])
return x
def test_pytorch_nonzero():
model = NonZeroModule()
x = torch.zeros((2, 10), dtype=torch.float32)
mask = torch.randint(0, 2, (2, 10)).bool()
with torch.no_grad():
traced_torch_model = torch.jit.trace(model, (x, mask))
import_input = [("input0", (2, 10)), ("input1", (2, 10))]
relay_model_ir, relay_model_params = tvm.relay.frontend.from_pytorch(
traced_torch_model, import_input
)
Triage
Please refer to the list of label tags here to find the relevant tags and add them below in a bullet format (example below).
- needs-triage
- frontend:pytorch