Skip to content

[Bug] Graph optimization model compilation error involving Pad operator #16898

@shaoyuyoung

Description

@shaoyuyoung

I am trying to compile an ONNX (graph below) model using TVM.
5618520ff3e8817d39d4422c547eaf9

Of course, this is a complicated graph, but we can simplify it as below.
image

These two graphs are equal. When I try to compile them using TVM. The original ONNX model fails but the simplified ONNX model passes. It is very strange!

This seems to involve the Pad operator shape-checking problem.

In theory, I think TVM should have strong compatibility with the native ONNX model. However, the truth is not satisfactory.

It seems that only simplified, simple models are acceptable to TVM

Expected behavior

ONNX compilation passes

Actual behavior

onnx fail
Traceback (most recent call last):
  18: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::transform::Pass, tvm::IRModule)>::AssignTypedLambda<tvm::transform::__mk_TVM9::{lambda(tvm::transform::Pass, tvm::IRModule)#1}>(tvm::transform::__mk_TVM9::{lambda(tvm::transform::Pass, tvm::IRModule)#1}, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >)::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}> >::Call(tvm::runtime::PackedFuncObj const*, std::__cxx11::basic_string<char, std::char_traits<char>, std::allocator<char> >, tvm::runtime::TVMRetValue)
  17: tvm::transform::Pass::operator()(tvm::IRModule) const
  16: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
  15: tvm::relay::transform::FunctionPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
  14: _ZN3tvm7runtime13PackedFun
  13: tvm::runtime::TypedPackedFunc<tvm::relay::Function (tvm::relay::Function, tvm::IRModule, tvm::transform::PassContext)>::AssignTypedLambda<tvm::relay::transform::DynamicToStatic()::{lambda(tvm::relay::Function, tvm::IRModule, tvm::transform::PassContext)#1}>(tvm::relay::transform::DynamicToStatic()::{lambda(tvm::relay::Function, tvm::IRModule, tvm::transform::PassContext)#1})::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}::operator()(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*) const
  12: tvm::relay::DynamicToStatic(tvm::relay::Function, tvm::IRModule)
  11: tvm::relay::DynamicToStaticMutator::PrepareInput(tvm::RelayExpr const&)
  10: tvm::transform::Pass::operator()(tvm::IRModule) const
  9: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
  8: tvm::relay::transform::FunctionPassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
  7: tvm::transform::Pass::operator()(tvm::IRModule) const
  6: tvm::transform::Pass::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
  5: tvm::transform::ModulePassNode::operator()(tvm::IRModule, tvm::transform::PassContext const&) const
  4: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<tvm::runtime::TypedPackedFunc<tvm::IRModule (tvm::IRModule, tvm::transform::PassContext)>::AssignTypedLambda<tvm::relay::transform::InferType()::{lambda(tvm::IRModule, tvm::transform::PassContext const&)#1}>(tvm::relay::transform::InferType()::{lambda(tvm::IRModule, tvm::transform::PassContext const&)#1})::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
  3: tvm::relay::TypeInferencer::Infer(tvm::GlobalVar, tvm::relay::Function)
  2: tvm::relay::TypeSolver::Solve()
  1: tvm::runtime::PackedFuncObj::Extractor<tvm::runtime::PackedFuncSubObj<tvm::runtime::TypedPackedFunc<bool (tvm::runtime::Array<tvm::Type, void> const&, int, tvm::Attrs const&, tvm::TypeReporter const&)>::AssignTypedLambda<bool (*)(tvm::runtime::Array<tvm::Type, void> const&, int, tvm::Attrs const&, tvm::TypeReporter const&)>(bool (*)(tvm::runtime::Array<tvm::Type, void> const&, int, tvm::Attrs const&, tvm::TypeReporter const&))::{lambda(tvm::runtime::TVMArgs const&, tvm::runtime::TVMRetValue*)#1}> >::Call(tvm::runtime::PackedFuncObj const*, tvm::runtime::TVMArgs, tvm::runtime::TVMRetValue*)
  0: tvm::relay::PadRel(tvm::runtime::Array<tvm::Type, void> const&, int, tvm::Attrs const&, tvm::TypeReporter const&)
  File "/root/anaconda3/conda-bld/tvm-package_1701590675822/work/src/relay/op/nn/pad.cc", line 131
InternalError: Check failed: (data->shape.size() == param->pad_width.size()) is false: There should be as many pad width pairs as shape dimensions but the shape has 5 dimensions and there are 4 pad width pairs.

Environment

Operating System: Ubuntu 18
TVM:0.15
Torch: 2.1.1
ONNX: 1.15.0

Steps to reproduce

ONNX file is here: onnx.zip

Here is the script

from onnxsim import simplify
import tvm
from tvm import relay
import onnx


def compile_onnx(onnx_model, shape):
    mod_from_onnx, params_onnx = relay.frontend.from_onnx(onnx_model,
                                                          shape=shape)
    with tvm.transform.PassContext(opt_level=4):
        executor = relay.build_module.create_executor(
            'graph', mod_from_onnx, tvm.cpu(), 'llvm', params_onnx
        ).evaluate()


model = onnx.load('./model.onnx')

try:
    compile_onnx(model, {'v0_0': [], 'v6_0': [5, 5, 4, 2, 1]})
except Exception as e:
    print(f"onnx fail\n{e}")

model_simp, check = simplify(model)

onnx.save(model_simp, "./model_simp.onnx")

assert check, "Simplified ONNX model could not be validated"

try:
    compile_onnx(model_simp, {'v0_0': [], 'v6_0': [5, 5, 4, 2, 1]})
except Exception as e:
    print(f"onnx-simplify fail\n{e}")

Triage

  • needs-triage

Metadata

Metadata

Assignees

No one assigned

    Labels

    needs-triagePRs or issues that need to be investigated by maintainers to find the right assignees to address ittype: bug

    Type

    No type

    Projects

    No projects

    Milestone

    No milestone

    Relationships

    None yet

    Development

    No branches or pull requests

    Issue actions