Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions python/tvm/relax/transform/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -63,6 +63,7 @@
RemovePurityChecking,
RemoveUnusedParameters,
RemoveUnusedOutputs,
ReorderTakeAfterMatmul,
RewriteCUDAGraph,
RewriteDataflowReshape,
RunCodegen,
Expand Down
15 changes: 15 additions & 0 deletions python/tvm/relax/transform/transform.py
Original file line number Diff line number Diff line change
Expand Up @@ -1302,6 +1302,21 @@ def ExpandMatmulOfSum():
return _ffi_api.ExpandMatmulOfSum() # type: ignore


def ReorderTakeAfterMatmul():
"""Reorder `matmul(x, take(weights, indices))` to `take(matmul(x,weights),indices)`

Useful for optimizing LoRA computations, where several LoRAs may
be batched together.

Returns
-------
ret : tvm.transform.Pass
The corresponding pass.
"""

return _ffi_api.ReorderTakeAfterMatmul() # type: ignore


def CombineParallelMatmul(check=None):
"""Combine multiple matmul operators sharing the same LHS matrix into one,
followed by slicing. When all matmul branches in a tree have the same set of fused ops,
Expand Down
164 changes: 164 additions & 0 deletions src/relax/transform/reorder_take_after_matmul.cc
Original file line number Diff line number Diff line change
@@ -0,0 +1,164 @@
/*
* Licensed to the Apache Software Foundation (ASF) under one
* or more contributor license agreements. See the NOTICE file
* distributed with this work for additional information
* regarding copyright ownership. The ASF licenses this file
* to you under the Apache License, Version 2.0 (the
* "License"); you may not use this file except in compliance
* with the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing,
* software distributed under the License is distributed on an
* "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
* KIND, either express or implied. See the License for the
* specific language governing permissions and limitations
* under the License.
*/

/*!
* \file tvm/relax/transform/expand_matmul_of_sum.cc
* \brief Expand `matmul(x, A+B)` to `matmul(x, A) + matmul(x,B)`
*/

#include <tvm/relax/analysis.h>
#include <tvm/relax/dataflow_matcher.h>
#include <tvm/relax/expr.h>
#include <tvm/relax/expr_functor.h>
#include <tvm/relax/transform.h>

#include <optional>
#include <unordered_set>
#include <vector>

#include "../op/tensor/index.h"
#include "../op/tensor/linear_algebra.h"
#include "../op/tensor/manipulate.h"

namespace tvm {
namespace relax {

namespace {
std::tuple<DFPattern, TypedPackedFunc<Expr(Expr, Map<DFPattern, Expr>)>> CreatePatterns() {
auto pat_lhs = WildcardPattern();

auto pat_weights = WildcardPattern();
auto pat_indices = WildcardPattern();
auto pat_rhs = IsOp("relax.take")(pat_weights, pat_indices);

auto pat_matmul = IsOp("relax.matmul")(pat_lhs, pat_rhs);

auto rewriter = [=](Expr expr, Map<DFPattern, Expr> matches) -> Expr {
auto lhs = matches[pat_lhs];
auto weights = matches[pat_weights];
auto indices = matches[pat_indices];

const auto* take_call = matches[pat_rhs].as<CallNode>();
ICHECK(take_call) << "InternalError: "
<< "Match of relax.take operator should produce Call, "
<< "but instead produces " << matches[pat_rhs] << " with type "
<< matches[pat_rhs]->GetTypeKey();
const auto* attrs = take_call->attrs.as<TakeAttrs>();
ICHECK(attrs) << "InternalError: "
<< "Attributes for relax.take operator should be TakeAttrs, "
<< "but were instead " << take_call->attrs << " with type "
<< take_call->GetTypeKey();

const auto* lhs_sinfo = lhs->struct_info_.as<TensorStructInfoNode>();
if (!lhs_sinfo) return expr;

const auto* weights_sinfo = weights->struct_info_.as<TensorStructInfoNode>();
if (!weights_sinfo) return expr;

const auto* indices_sinfo = indices->struct_info_.as<TensorStructInfoNode>();
if (!indices_sinfo) return expr;

const auto* matmul_sinfo = expr->struct_info_.as<TensorStructInfoNode>();
if (!matmul_sinfo) return expr;

if (!attrs->axis.defined()) return expr;
auto axis = attrs->axis.value()->value;

if (lhs_sinfo->IsUnknownNdim() || indices_sinfo->IsUnknownNdim() ||
matmul_sinfo->IsUnknownNdim() || weights_sinfo->IsUnknownNdim())
return expr;

if (indices_sinfo->ndim == 1 && axis + 1 == weights_sinfo->ndim) {
// Simpler case. The activations may have batch dimensions, but
// the weights do not.

// lhs.shape = [*batch, infeatures]
// weights.shape = [infeatures, table_size]
// indices.shape = [outfeatures]

// out_table.shape = [*batch, table_size]
auto out_table = matmul(lhs, weights, DataType::Void());
// new_output.shape = [*batch, outfeatures]
auto new_output = take(out_table, indices, Integer(matmul_sinfo->ndim - 1));

return new_output;
} else if (lhs_sinfo->ndim == 3 && weights_sinfo->ndim == 3 && indices_sinfo->ndim == 1 &&
axis == 0 && weights_sinfo->GetShape().defined() &&
lhs_sinfo->GetShape().defined()) {
// More complicated case, used for batched LoRA. The conditions
// on the argument dimensions can probably be relaxed, but would
// probably need to remove the use of the einsum operator.

auto lhs_shape = lhs_sinfo->GetShape().value();
auto weight_shape = weights_sinfo->GetShape().value();

// lhs.shape = [batch1, batch2, infeatures]
// weights.shape = [table_size, infeatures, outfeatures]
// indices.shape = [batch1]

// reordered_weight.shape = [infeatures, table_size, outfeatures]
auto reordered_weight = permute_dims(weights, Array{Integer(1), Integer(0), Integer(2)});
// fused_weight.shape = [infeatures, table_size * outfeatures]
auto fused_weight = reshape(reordered_weight,
ShapeExpr({weight_shape[1], weight_shape[0] * weight_shape[2]}));
// fused_output.shape = [batch1, batch2, table_size * outfeatures]
auto fused_output = matmul(lhs, fused_weight, DataType::Void());
// indexed_output.shape = [batch1, batch2, table_size, outfeatures]
auto indexed_output = reshape(
fused_output, ShapeExpr({lhs_shape[0], lhs_shape[1], weight_shape[0], weight_shape[2]}));

// TODO(Lunderberg): Find a better way to express these last two
// steps. For an output at [i,j,k], the value is
// `indexed_output[i, j, indices[i], k]`, but there doesn't seem
// to be a good way to express that in relax. It could be
// written using `call_te`, but that would prevent later
// optimizations from recognizing the high-level relax
// operations.

// duplicated_output.shape = [batch1, batch2, batch1, outfeatures]
auto duplicated_output = take(indexed_output, indices, Integer(2));
// new_output.shape = [batch1, batch2, outfeatures]
auto new_output = einsum(Tuple({duplicated_output}), "ijik->ijk");

return new_output;
} else {
return expr;
}
};

return {pat_matmul, rewriter};
}

} // namespace

namespace transform {
Pass ReorderTakeAfterMatmul() {
auto pass_func = [=](Function func, IRModule mod, PassContext pc) {
auto [pattern, rewriter] = CreatePatterns();
return RewriteCall(pattern, rewriter, func);
};
return CreateFunctionPass(pass_func, 1, "ReorderTakeAfterMatmul", {});
}

TVM_REGISTER_GLOBAL("relax.transform.ReorderTakeAfterMatmul")
.set_body_typed(ReorderTakeAfterMatmul);

} // namespace transform
} // namespace relax
} // namespace tvm
186 changes: 186 additions & 0 deletions tests/python/relax/test_transform_reorder_take_after_matmul.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,186 @@
# Licensed to the Apache Software Foundation (ASF) under one
# or more contributor license agreements. See the NOTICE file
# distributed with this work for additional information
# regarding copyright ownership. The ASF licenses this file
# to you under the Apache License, Version 2.0 (the
# "License"); you may not use this file except in compliance
# with the License. You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
# KIND, either express or implied. See the License for the
# specific language governing permissions and limitations
# under the License.

import inspect

import pytest

import tvm.testing
from tvm import relax
from tvm.script import ir as I, relax as R, tir as T


class Base:
def test_compare(self):
transform = relax.transform.ReorderTakeAfterMatmul()

if inspect.isclass(self.Expected) and issubclass(self.Expected, Exception):
with pytest.raises(self.Expected):
transform(self.Before)
else:
after = transform(self.Before)
tvm.ir.assert_structural_equal(self.Expected, after)


class TestSimple(Base):
@I.ir_module
class Before:
@R.function
def main(
x: R.Tensor([1, 16], "float32"),
weight_table: R.Tensor([16, "weight_table_size"], "float32"),
routing_table: R.Tensor([32], "int64"),
) -> R.Tensor([1, 32], "float32"):
weight_table_size = T.int64()
with R.dataflow():
weight: R.Tensor([16, 32], "float32") = R.take(weight_table, routing_table, axis=1)
out: R.Tensor([1, 32], "float32") = R.matmul(x, weight)
R.output(out)
return out

@I.ir_module
class Expected:
@R.function
def main(
x: R.Tensor([1, 16], "float32"),
weight_table: R.Tensor([16, "weight_table_size"], "float32"),
routing_table: R.Tensor([32], "int64"),
) -> R.Tensor([1, 32], "float32"):
weight_table_size = T.int64()
with R.dataflow():
out_table: R.Tensor([1, weight_table_size], "float32") = R.matmul(x, weight_table)
out: R.Tensor([1, 32], "float32") = R.take(out_table, routing_table, axis=1)
R.output(out)
return out


class TestBatchedActivations(Base):
@I.ir_module
class Before:
@R.function
def main(
x: R.Tensor(["batch_size", 1, 16], "float32"),
weight_table: R.Tensor([16, "weight_table_size"], "float32"),
routing_table: R.Tensor([32], "int64"),
) -> R.Tensor(["batch_size", 1, 32], "float32"):
batch_size = T.int64()
weight_table_size = T.int64()
with R.dataflow():
weight: R.Tensor([16, 32], "float32") = R.take(weight_table, routing_table, axis=1)
out: R.Tensor([batch_size, 1, 32], "float32") = R.matmul(x, weight)
R.output(out)
return out

@I.ir_module
class Expected:
@R.function
def main(
x: R.Tensor(["batch_size", 1, 16], "float32"),
weight_table: R.Tensor([16, "weight_table_size"], "float32"),
routing_table: R.Tensor([32], "int64"),
) -> R.Tensor(["batch_size", 1, 32], "float32"):
batch_size = T.int64()
weight_table_size = T.int64()
with R.dataflow():
out_table: R.Tensor([batch_size, 1, weight_table_size], "float32") = R.matmul(
x, weight_table
)
out: R.Tensor([batch_size, 1, 32], "float32") = R.take(
out_table, routing_table, axis=2
)
R.output(out)
return out


class TestStaticBatchedActivationsAndWeights(Base):
@I.ir_module
class Before:
@R.function
def main(
x: R.Tensor([128, 1, 16], "float32"),
weight_table: R.Tensor(["routing_table_size", 16, 32], "float32"),
routing_table: R.Tensor([128], "int64"),
) -> R.Tensor([128, 1, 32], "float32"):
batch_size = T.int64()
routing_table_size = T.int64()
with R.dataflow():
weight = R.take(weight_table, routing_table, axis=0)
out = R.matmul(x, weight)
R.output(out)
return out

@I.ir_module
class Expected:
@R.function
def main(
x: R.Tensor([128, 1, 16], "float32"),
weight_table: R.Tensor(["routing_table_size", 16, 32], "float32"),
routing_table: R.Tensor([128], "int64"),
) -> R.Tensor([128, 1, 32], "float32"):
batch_size = T.int64()
routing_table_size = T.int64()
with R.dataflow():
reordered_weight = R.permute_dims(weight_table, [1, 0, 2])
fused_weight = R.reshape(reordered_weight, [16, routing_table_size * 32])
fused_output = R.matmul(x, fused_weight)
reordered_output = R.reshape(fused_output, [128, 1, routing_table_size, 32])
tabular_output = R.take(reordered_output, routing_table, axis=2)
out = R.einsum([tabular_output], "ijik->ijk")
R.output(out)
return out


class TestDynamicBatchedActivationsAndWeights(Base):
@I.ir_module
class Before:
@R.function
def main(
x: R.Tensor(["batch_size", 1, 16], "float32"),
weight_table: R.Tensor(["routing_table_size", 16, 32], "float32"),
routing_table: R.Tensor(["batch_size"], "int64"),
) -> R.Tensor(["batch_size", 1, 32], "float32"):
batch_size = T.int64()
routing_table_size = T.int64()
with R.dataflow():
weight = R.take(weight_table, routing_table, axis=0)
out = R.matmul(x, weight)
R.output(out)
return out

@I.ir_module
class Expected:
@R.function
def main(
x: R.Tensor(["batch_size", 1, 16], "float32"),
weight_table: R.Tensor(["routing_table_size", 16, 32], "float32"),
routing_table: R.Tensor(["batch_size"], "int64"),
) -> R.Tensor(["batch_size", 1, 32], "float32"):
batch_size = T.int64()
routing_table_size = T.int64()
with R.dataflow():
reordered_weight = R.permute_dims(weight_table, [1, 0, 2])
fused_weight = R.reshape(reordered_weight, [16, routing_table_size * 32])
fused_output = R.matmul(x, fused_weight)
reordered_output = R.reshape(fused_output, [batch_size, 1, routing_table_size, 32])
tabular_output = R.take(reordered_output, routing_table, axis=2)
out = R.einsum([tabular_output], "ijik->ijk")
R.output(out)
return out


if __name__ == "__main__":
tvm.testing.main()