Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
12 changes: 10 additions & 2 deletions python/tvm/dlight/gpu/low_batch_gemv.py
Original file line number Diff line number Diff line change
Expand Up @@ -98,7 +98,14 @@ def is_gemv(sch: tir.Schedule, block_info: BlockInfo) -> Optional[List[tir.Buffe
for iter_var in block_stmt.iter_vars
if isinstance(iter_var.dom.extent, tir.IntImm)
)
if len(const_iter_vars) == len(block_stmt.iter_vars):
if len(block_stmt.iter_vars) - len(const_iter_vars) != 1:
return None
symbolic_iter_var = list(
iter_var
for iter_var in block_stmt.iter_vars
if not isinstance(iter_var.dom.extent, tir.IntImm)
)[0]
if symbolic_iter_var.iter_type != tir.stmt.IterVar.DataPar:
return None
ret = [
read.buffer
Expand Down Expand Up @@ -220,7 +227,8 @@ def apply( # pylint: disable=too-many-locals,too-many-branches,too-many-return-
return None
sch = tir.Schedule(func)
block_infos = normalize_prim_func(sch)

if block_infos is None:
return None
reduction_block_infos = [
block_info for block_info in block_infos if block_info.is_reduction()
]
Expand Down
24 changes: 24 additions & 0 deletions tests/python/dlight/test_gpu_low_batch_gemv.py
Original file line number Diff line number Diff line change
Expand Up @@ -251,5 +251,29 @@ def expected(var_A: T.handle, B: T.Buffer((T.int64(4096), T.int64(4096)), "float
tvm.ir.assert_structural_equal(mod["main"], expected)


def test_reduction_symbolic_var():
# fmt: off
@T.prim_func(private=True)
def before(var_A: T.handle, var_B: T.handle, matmul: T.Buffer((T.int64(1), T.int64(32), T.int64(1), T.int64(128)), "float32")):
T.func_attr({"tir.noalias": T.bool(True)})
kv_seq_len = T.int64()
A = T.match_buffer(var_A, (T.int64(1), T.int64(32), T.int64(1), kv_seq_len))
B = T.match_buffer(var_B, (T.int64(1), T.int64(32), kv_seq_len, T.int64(128)))
# with T.block("root"):
for i0, i1, i2, i3, k in T.grid(T.int64(1), T.int64(32), T.int64(1), T.int64(128), kv_seq_len):
with T.block("matmul"):
v_i0, v_i1, v_i2, v_i3, v_k = T.axis.remap("SSSSR", [i0, i1, i2, i3, k])
T.reads(A[v_i0, v_i1, v_i2, v_k], B[v_i0, v_i1, v_k, v_i3])
T.writes(matmul[v_i0, v_i1, v_i2, v_i3])
with T.init():
matmul[v_i0, v_i1, v_i2, v_i3] = T.float32(0)
matmul[v_i0, v_i1, v_i2, v_i3] = matmul[v_i0, v_i1, v_i2, v_i3] + A[v_i0, v_i1, v_i2, v_k] * B[v_i0, v_i1, v_k, v_i3]
# fmt: on
mod = tvm.IRModule({"main": before})
with Target("metal"):
mod = dl.ApplyDefaultSchedule(dl.gpu.LowBatchGEMV(4))(mod)
tvm.ir.assert_structural_equal(mod["main"], before)


if __name__ == "__main__":
tvm.testing.main()