Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
74 changes: 74 additions & 0 deletions python/tvm/relax/frontend/torch/base_fx_graph_translator.py
Original file line number Diff line number Diff line change
Expand Up @@ -111,6 +111,80 @@ def convert(node: fx.Node) -> relax.Var:

return convert

def _clamp(self, node: fx.Node) -> relax.Expr:
args = self.retrieve_args(node)
a_min = args[1] if len(args) > 1 else node.kwargs["min"]
a_max = args[2] if len(args) > 2 else node.kwargs["max"]
if not isinstance(a_min, (int, float)):
raise ValueError(
f"TVM only supports constant min value for torch.clamp/clip, "
f"but got {a_min} with type {type(a_min)}"
)
if not isinstance(a_max, (int, float)):
raise ValueError(
f"TVM only supports constant max value for torch.clamp/clip, "
f"but got {a_max} with type {type(a_max)}"
)
return self.block_builder.emit(relax.op.clip(args[0], a_min, a_max))

def _gelu(self, node: fx.Node) -> relax.Expr:
approximate = node.kwargs.get("approximate", "none")
if approximate == "none":
return self.block_builder.emit(relax.op.nn.gelu(self.env[node.args[0]]))
elif approximate == "tanh":
return self.block_builder.emit(relax.op.nn.gelu_tanh(self.env[node.args[0]]))
else:
raise KeyError("Unregonized approximate algorithm for gelu: {}.".format(approximate))

def _hardsigmoid(self, node: fx.Node) -> relax.Var:
args = self.retrieve_args(node)
x = args[0]
dtype = x.struct_info.dtype
x0 = relax.op.add(x, relax.const(3, dtype))
x1 = relax.op.clip(x0, 0, 6)
return self.block_builder.emit(relax.op.divide(x1, relax.const(6, dtype)))

def _hardswish(self, node: fx.Node) -> relax.Var:
args = self.retrieve_args(node)
x = args[0]
dtype = x.struct_info.dtype
x0 = relax.op.add(x, relax.const(3, dtype))
x1 = relax.op.clip(x0, 0, 6)
x2 = relax.op.divide(x1, relax.const(6, dtype))
return self.block_builder.emit(relax.op.multiply(x, x2))

def _leakyrelu(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
alpha = node.args[1] if len(node.args) > 1 else node.kwargs.get("negative_slope", 0.01)
return self.block_builder.emit(relax.op.nn.leakyrelu(x, alpha))

def _log_softmax(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
dim = node.args[1] if len(node.args) > 1 else node.kwargs.get("dim", -1)
return self.block_builder.emit(relax.op.nn.log_softmax(x, dim))

def _round(self, node: fx.Node) -> relax.Expr:
if node.kwargs.get("decimals", 0) != 0:
raise ValueError("specifying decimals for round is not supported yet")
arg = self.env[node.args[0]]
return self.block_builder.emit(relax.op.round(arg))

def _softmax(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
dim = node.args[1] if len(node.args) > 1 else node.kwargs.get("dim", -1)
return self.block_builder.emit(relax.op.nn.softmax(x, dim))

def _tril_triu(self, op: Callable) -> Callable:
from torch import fx

def convert(node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
k = node.args[1] if len(node.args) > 1 else node.kwargs.get("diagonal", 0)
assert isinstance(k, int)
return self.block_builder.emit(op(x, k))

return convert

########## Neural Network ##########

def _adaptive_avg_pool2d(self, node: fx.Node) -> relax.Var:
Expand Down
38 changes: 38 additions & 0 deletions python/tvm/relax/frontend/torch/exported_program_translator.py
Original file line number Diff line number Diff line change
Expand Up @@ -64,13 +64,51 @@ def create_input_vars(

return parameters_buffers_constants, user_inputs

########## Unary Ops ##########

def _hardtanh(self, node: fx.Node) -> relax.Expr:
args = self.retrieve_args(node)
x = args[0]
min_val = node.args[1] if len(args) > 1 else node.kwargs("min_val", -1.0)
max_val = node.args[2] if len(args) > 2 else node.kwargs("max_val", 1.0)
return self.block_builder.emit(relax.op.clip(x, min_val, max_val))

def create_convert_map(
self,
) -> Dict[str, Callable[[fx.Node], relax.Var]]:
return {
# unary
"acos.default": self._unary_op(relax.op.acos),
"acosh.default": self._unary_op(relax.op.acosh),
"asin.default": self._unary_op(relax.op.asin),
"asinh.default": self._unary_op(relax.op.asinh),
"atan.default": self._unary_op(relax.op.atan),
"atanh.default": self._unary_op(relax.op.atanh),
"clamp.default": self._clamp,
"cos.default": self._unary_op(relax.op.cos),
"cosh.default": self._unary_op(relax.op.cosh),
"dropout.default": lambda node: self.env[node.args[0]],
"exp.default": self._unary_op(relax.op.exp),
"gelu.default": self._gelu,
"hardsigmoid.default": self._hardsigmoid,
"hardswish.default": self._hardswish,
"hardtanh.default": self._hardtanh,
"leaky_relu.default": self._leakyrelu,
"log_softmax.int": self._log_softmax,
"neg.default": self._unary_op(relax.op.negative),
"relu.default": self._unary_op(relax.op.nn.relu),
"round.default": self._round,
"rsqrt.default": self._unary_op(relax.op.rsqrt),
"sigmoid.default": self._unary_op(relax.op.sigmoid),
"silu.default": self._unary_op(relax.op.nn.silu),
"sin.default": self._unary_op(relax.op.sin),
"sinh.default": self._unary_op(relax.op.sinh),
"softmax.int": self._softmax,
"sqrt.default": self._unary_op(relax.op.sqrt),
"tan.default": self._unary_op(relax.op.tan),
"tanh.default": self._unary_op(relax.op.tanh),
"tril.default": self._tril_triu(relax.op.tril),
"triu.default": self._tril_triu(relax.op.triu),
# neural network
"adaptive_avg_pool2d.default": self._adaptive_avg_pool2d,
"conv2d.default": self._conv2d,
Expand Down
74 changes: 0 additions & 74 deletions python/tvm/relax/frontend/torch/fx_translator.py
Original file line number Diff line number Diff line change
Expand Up @@ -62,82 +62,19 @@ def _fetch_attr(self, model, target: str):

########## Unary Ops ##########

def _clamp(self, node: fx.Node) -> relax.Expr:
args = self.retrieve_args(node)
a_min = args[1] if len(args) > 1 else node.kwargs["min"]
a_max = args[2] if len(args) > 2 else node.kwargs["max"]
if not isinstance(a_min, (int, float)):
raise ValueError(
f"TVM only supports constant min value for torch.clamp/clip, "
f"but got {a_min} with type {type(a_min)}"
)
if not isinstance(a_max, (int, float)):
raise ValueError(
f"TVM only supports constant max value for torch.clamp/clip, "
f"but got {a_max} with type {type(a_max)}"
)
return self.block_builder.emit(relax.op.clip(args[0], a_min, a_max))

def _gelu(self, node: fx.Node) -> relax.Expr:
approximate = node.kwargs.get("approximate", "none")
if approximate == "none":
return self.block_builder.emit(relax.op.nn.gelu(self.env[node.args[0]]))
elif approximate == "tanh":
return self.block_builder.emit(relax.op.nn.gelu_tanh(self.env[node.args[0]]))
else:
raise KeyError("Unregonized approximate algorithm for gelu: {}.".format(approximate))

def _hardsigmoid(self, node: fx.Node) -> relax.Var:
args = self.retrieve_args(node)
x = args[0]
dtype = x.struct_info.dtype
x0 = relax.op.add(x, relax.const(3, dtype))
x1 = relax.op.clip(x0, 0, 6)
return self.block_builder.emit(relax.op.divide(x1, relax.const(6, dtype)))

def _hardswish(self, node: fx.Node) -> relax.Var:
args = self.retrieve_args(node)
x = args[0]
dtype = x.struct_info.dtype
x0 = relax.op.add(x, relax.const(3, dtype))
x1 = relax.op.clip(x0, 0, 6)
x2 = relax.op.divide(x1, relax.const(6, dtype))
return self.block_builder.emit(relax.op.multiply(x, x2))

def _leakyrelu(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
alpha = node.args[1] if len(node.args) > 1 else node.kwargs.get("negative_slope", 0.01)
return self.block_builder.emit(relax.op.nn.leakyrelu(x, alpha))

def _leakyrelu_module(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
module = self.named_modules[node.target]
alpha = module.negative_slope
return self.block_builder.emit(relax.op.nn.leakyrelu(x, alpha))

def _log_softmax(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
dim = node.args[1] if len(node.args) > 1 else node.kwargs.get("dim", -1)
return self.block_builder.emit(relax.op.nn.log_softmax(x, dim))

def _log_softmax_module(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
module = self.named_modules[node.target]
dim = module.dim
assert dim is not None
return self.block_builder.emit(relax.op.nn.log_softmax(x, dim))

def _round(self, node: fx.Node) -> relax.Expr:
if node.kwargs.get("decimals", 0) != 0:
raise ValueError("specifying decimals for round is not supported yet")
arg = self.env[node.args[0]]
return self.block_builder.emit(relax.op.round(arg))

def _softmax(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
dim = node.args[1] if len(node.args) > 1 else node.kwargs.get("dim", -1)
return self.block_builder.emit(relax.op.nn.softmax(x, dim))

def _softmax_module(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
module = self.named_modules[node.target]
Expand All @@ -159,17 +96,6 @@ def convert(node: fx.Node) -> relax.Var:

return convert

def _tril_triu(self, op: Callable) -> Callable:
from torch import fx

def convert(node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
k = node.args[1] if len(node.args) > 1 else node.kwargs.get("diagonal", 0)
assert isinstance(k, int)
return self.block_builder.emit(op(x, k))

return convert

########## Binary Ops ##########

def _binary_op(self, relax_op: Callable, intrinsic_op: Callable) -> Callable:
Expand Down
Loading
Loading