Skip to content
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
21 changes: 21 additions & 0 deletions python/tvm/relax/frontend/torch/base_fx_graph_translator.py
Original file line number Diff line number Diff line change
Expand Up @@ -847,6 +847,21 @@ def _expand(self, node: fx.Node) -> relax.Var:
broadcast_shape.append(i)
return self.block_builder.emit(relax.op.broadcast_to(args[0], broadcast_shape))

def _flip(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
dims = node.args[1] if len(node.args) > 1 else node.kwargs.get("dims", None)
if isinstance(dims, (list, tuple)) and len(dims) > 0:
dims = dims[0]
elif not isinstance(dims, int):
raise TypeError(f"flip expects an integer axis, but got {type(dims)}: {dims}")
return self.block_builder.emit(relax.op.flip(x, dims))

def _gather(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
dim = node.args[1] if len(node.args) > 1 else node.kwargs.get("dim", 0)
index = self.env[node.args[2]]
return self.block_builder.emit(relax.op.gather_elements(x, index, axis=dim))

def _permute(self, node: fx.Node) -> relax.Var:
import torch # type: ignore

Expand Down Expand Up @@ -921,6 +936,12 @@ def _stack(self, node: fx.Node) -> relax.Var:
s_shape.append(s)
return self.block_builder.emit(relax.op.reshape(cat, s_shape))

def _take(self, node: fx.Node) -> relax.Var:
x = self.env[node.args[0]]
indices = self.env[node.args[1]]
indices = self.block_builder.emit(relax.op.astype(indices, "int32"))
return self.block_builder.emit(relax.op.take(x, indices))

def _tile(self, node: fx.Node) -> relax.Var:
import torch # type: ignore

Expand Down
3 changes: 3 additions & 0 deletions python/tvm/relax/frontend/torch/fx_translator.py
Original file line number Diff line number Diff line change
Expand Up @@ -733,6 +733,8 @@ def create_convert_map(
"cumsum": self._cumsum,
"expand": self._expand,
"flatten": self._flatten,
"flip": self._flip,
"gather": self._gather,
"permute": self._permute,
"repeat": self._repeat,
"reshape": self._reshape,
Expand All @@ -741,6 +743,7 @@ def create_convert_map(
"split": self._split,
"squeeze": self._squeeze,
"stack": self._stack,
"take": self._take,
"tile": self._tile,
"transpose": self._transpose,
"unsqueeze": lambda node: self.block_builder.emit(
Expand Down
134 changes: 134 additions & 0 deletions tests/python/relax/test_frontend_from_fx.py
Original file line number Diff line number Diff line change
Expand Up @@ -3903,5 +3903,139 @@ def main(inp_0: R.Tensor((2, 3), dtype="float32")) -> R.Tensor((), dtype="bool")
verify_model(IsFloatingPoint(), [([2, 3], "float32")], {}, Expected)


def test_gather():
class Gather0(Module):
def forward(self, data, indices):
return torch.gather(data, 0, indices)

class Gather1(Module):
def forward(self, data, indices):
return torch.gather(data, 1, indices)

class Gather2(Module):
def forward(self, data, indices):
return torch.gather(data, -1, indices)

class Gather3(Module):
def forward(self, data, indices):
return torch.gather(data, -2, indices)

@tvm.script.ir_module
class Expected0:
@R.function
def main(
inp_0: R.Tensor((2, 3), dtype="float32"),
inp_1: R.Tensor((2, 3), dtype="int32"),
) -> R.Tensor((2, 3), dtype="float32"):
with R.dataflow():
lv: R.Tensor((2, 3), dtype="float32") = R.gather_elements(inp_0, inp_1, axis=0)
gv: R.Tensor((2, 3), dtype="float32") = lv
R.output(gv)
return gv

@tvm.script.ir_module
class Expected1:
@R.function
def main(
inp_0: R.Tensor((2, 3), dtype="float32"),
inp_1: R.Tensor((2, 3), dtype="int32"),
) -> R.Tensor((2, 3), dtype="float32"):
with R.dataflow():
lv: R.Tensor((2, 3), dtype="float32") = R.gather_elements(inp_0, inp_1, axis=1)
gv: R.Tensor((2, 3), dtype="float32") = lv
R.output(gv)
return gv

@tvm.script.ir_module
class Expected2:
@R.function
def main(
inp_0: R.Tensor((2, 3), dtype="float32"),
inp_1: R.Tensor((2, 3), dtype="int32"),
) -> R.Tensor((2, 3), dtype="float32"):
with R.dataflow():
lv: R.Tensor((2, 3), dtype="float32") = R.gather_elements(inp_0, inp_1, axis=-1)
gv: R.Tensor((2, 3), dtype="float32") = lv
R.output(gv)
return gv

@tvm.script.ir_module
class Expected3:
@R.function
def main(
inp_0: R.Tensor((2, 3), dtype="float32"),
inp_1: R.Tensor((2, 3), dtype="int32"),
) -> R.Tensor((2, 3), dtype="float32"):
with R.dataflow():
lv: R.Tensor((2, 3), dtype="float32") = R.gather_elements(inp_0, inp_1, axis=-2)
gv: R.Tensor((2, 3), dtype="float32") = lv
R.output(gv)
return gv

verify_model(Gather0(), [([2, 3], "float32"), ([2, 3], "int32")], {}, Expected0)
verify_model(Gather1(), [([2, 3], "float32"), ([2, 3], "int32")], {}, Expected1)
verify_model(Gather2(), [([2, 3], "float32"), ([2, 3], "int32")], {}, Expected2)
verify_model(Gather3(), [([2, 3], "float32"), ([2, 3], "int32")], {}, Expected3)


def test_flip():
class Flip0(Module):
def forward(self, data):
return torch.flip(data, [0])

class Flip1(Module):
def forward(self, data):
return torch.flip(data, [1])

@tvm.script.ir_module
class Expected0:
@R.function
def main(
inp_0: R.Tensor((2, 2), dtype="float32"),
) -> R.Tensor((2, 2), dtype="float32"):
with R.dataflow():
lv: R.Tensor((2, 2), dtype="float32") = R.flip(inp_0, axis=0)
gv: R.Tensor((2, 2), dtype="float32") = lv
R.output(gv)
return gv

@tvm.script.ir_module
class Expected1:
@R.function
def main(
inp_0: R.Tensor((2, 2), dtype="float32"),
) -> R.Tensor((2, 2), dtype="float32"):
with R.dataflow():
lv: R.Tensor((2, 2), dtype="float32") = R.flip(inp_0, axis=1)
gv: R.Tensor((2, 2), dtype="float32") = lv
R.output(gv)
return gv

verify_model(Flip0(), [([2, 2], "float32")], {}, Expected0)
verify_model(Flip1(), [([2, 2], "float32")], {}, Expected1)


def test_take():
class Take(Module):
def forward(self, data, indices):
return torch.take(data, indices)

@tvm.script.ir_module
class Expected:
@R.function
def main(
inp_0: R.Tensor((5,), dtype="float32"),
inp_1: R.Tensor((3,), dtype="int32"),
) -> R.Tensor((3,), dtype="float32"):
with R.dataflow():
lv: R.Tensor((3,), dtype="int32") = R.astype(inp_1, "int32")
lv1: R.Tensor((3,), dtype="float32") = R.take(inp_0, lv)
gv: R.Tensor((3,), dtype="float32") = lv1
R.output(gv)
return gv

verify_model(Take(), [([5], "float32"), ([3], "int32")], {}, Expected)


if __name__ == "__main__":
tvm.testing.main()
Loading